skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Substitution Rate in TiO 2 Anatase Nanoparticles with Cationic Vacancies for Fast Lithium Storage

Journal Article · · Chemistry of Materials

Doping is generally used to tune and enhance the properties of metal oxides. However, their chemical composition cannot be readily modified beyond low dopant amounts without disrupting the crystalline atomic structure. In the case of anatase TiO2, we introduce a new solution-based chemical route allowing the composition to be significantly modified, substituting the divalent O2- anions by monovalent F- and OH- anions resulting in the formation of cationic Ti4+ vacancies (square) whose concentration can be controlled by the reaction temperature. The resulting polyanionic anatase has the general composition Ti1-x-y square x+yO2-4(x+y)F4x(OH)4y, reaching vacancy concentrations of up to 22%, i.e., Ti0.78 square 0.22O1.12F0.4(OH)0.48. Solid-state F-19 NMR spectroscopy reveals that fluoride ions can accommodate up to three different environments, depending on Ti and vacancies (i.e. Ti3-F, Ti-2 square 1-F, and Ti-1 square 2-F), with a preferential location close to vacancies. DFT calculations further confirm the fluoride/vacancy ordering. When its characteristics were evaluated as an electrode for reversible Li-ion storage, the material shows a modified lithium reaction mechanism, which has been rationalized by the occurrence of cationic vacancies acting as additional lithium hosting sites within the anatase framework. Finally, the material shows a fast discharging/charging behavior, compared to TiO2, highlighting the benefits of the structural modifications and paving the way for the design of advanced electrode materials, based on a defect mediated mechanism.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
European Commission - Community Research and Development Information Service (CORDIS) - Seventh Framework Programme (FP7); USDOE Office of Science - Office of Basic Energy Sciences - Scientific User Facilities Division
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1325245
Journal Information:
Chemistry of Materials, Vol. 27, Issue 14; ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English

Similar Records

Lithium Intercalation in Anatase Titanium Vacancies and the Role of Local Anionic Environment
Journal Article · Sat Apr 07 00:00:00 EDT 2018 · Chemistry of Materials · OSTI ID:1325245

Layered Lepidocrocite Type Structure Isolated by Revisiting the Sol–Gel Chemistry of Anatase TiO 2 : A New Anode Material for Batteries
Journal Article · Tue Sep 19 00:00:00 EDT 2017 · Chemistry of Materials · OSTI ID:1325245

Identify OH groups in TiOF{sub 2} and their impact on the lithium intercalation properties
Journal Article · Wed Feb 15 00:00:00 EST 2017 · Journal of Solid State Chemistry · OSTI ID:1325245

Related Subjects