skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report

Abstract

At the beginning of the U.S. Department of Energy (DOE) Marine Atmospheric Radiation Measurement (ARM) Climate Research Facility Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC) experiment, we recognized that the crew on the ship’s bridge would like to see a display of the meteorological data that was being collected. While a display on the bridge would be marginally useful to the science, it was decided to make a display for the bridge. A display was programmed in Lab View and a personal computer (PC) was set up in the bridge. This remained in operation until the ship went to dry dock for upgrades and service. Part of the upgrade was a new meteorological system for the ship. After this time there was no need for the ARM display and so it was not re-installed for the remainder of the program.

Authors:
 [1];  [2]
  1. Remote Measurements & Research Company, Seattle, WA (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1324980
Report Number(s):
DOE/SC-ARM-16-048
DOE Contract Number:
AC05-7601830
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; MAGIC campaign; clouds; meteorological data display; meteorological measurements at sea

Citation Formats

Reynolds, R. Michael, and Lewis, Ernie. Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report. United States: N. p., 2016. Web. doi:10.2172/1324980.
Reynolds, R. Michael, & Lewis, Ernie. Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report. United States. doi:10.2172/1324980.
Reynolds, R. Michael, and Lewis, Ernie. Thu . "Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report". United States. doi:10.2172/1324980. https://www.osti.gov/servlets/purl/1324980.
@article{osti_1324980,
title = {Marine ARM GPCI Investigation of Clouds Bridge Display Field Campaign Report},
author = {Reynolds, R. Michael and Lewis, Ernie},
abstractNote = {At the beginning of the U.S. Department of Energy (DOE) Marine Atmospheric Radiation Measurement (ARM) Climate Research Facility Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC) experiment, we recognized that the crew on the ship’s bridge would like to see a display of the meteorological data that was being collected. While a display on the bridge would be marginally useful to the science, it was decided to make a display for the bridge. A display was programmed in Lab View and a personal computer (PC) was set up in the bridge. This remained in operation until the ship went to dry dock for upgrades and service. Part of the upgrade was a new meteorological system for the ship. After this time there was no need for the ARM display and so it was not re-installed for the remainder of the program.},
doi = {10.2172/1324980},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 2016},
month = {Thu Sep 01 00:00:00 EDT 2016}
}

Technical Report:

Save / Share:
  • One of the most critical measurements in the suite of meteorological measurements used for the calculation of evaporation and latent heat flux is the relative humidity (RH). In order to achieve an overall net flux uncertainty < 10 W/m 2 (Bradley and Fairall, 2006), the RH must be accurate to < 2 %RH. Anyone experienced in shipboard meteorological measurements will recognize that this is a tough specification. During the U.S. Department of Energy (DOE) Marine Atmospheric Radiation Measurement (ARM) Climate Research Facility Global Energy and Water Experiment (GEWEX) Cloud System Study (GCSS) Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds (MAGIC)more » experiment, the meteorological package used three different RH sensors. We found approximately 3-4 % differences between units. To arbitrate the differences and to track calibration drift over the months of exposure, we used a precision psychrometer. The Assmann Psychrometer, Model 430101 is a classic, mercury-in-glass instrument that gives a precise measure of the wet and dry bulb temperatures from which atmospheric humidity and RH are computed. On a regular basis, typically after each balloon launch, a technician took the psychrometer to an exposed location on the bridge roof. That was just below the instruments on the mast and high enough into the mixed layer that the difference is negligible.« less
  • Sea surface temperature (SST) is one of the most appropriate and important climate parameters: a widespread increase is an indicator of global warming and modifications of the geographical distribution of SST are an extremely sensitive indicator of climate change. There is high demand for accurate, reliable, high-spatial-and-temporal-resolution SST measurements for the parameterization of ocean-atmosphere heat, momentum, and gas (SST is therefore critical to understanding the processes controlling the global carbon dioxide budget) fluxes, for detailed diagnostic and process-orientated studies to better understand the behavior of the climate system, as model boundary conditions, for assimilation into climate models, and for themore » rigorous validation of climate model output. In order to achieve an overall net flux uncertainty < 10 W/m 2 (Bradley and Fairall, 2006), the sea surface (skin) temperature (SSST) must be measured to an error < 0.1 C and a precision of 0.05 C. Anyone experienced in shipboard meteorological measurements will recognize this is a tough specification. These demands require complete confidence in the content, interpretation, accuracy, reliability, and continuity of observational SST data—criteria that can only be fulfilled by the successful implementation of an ongoing data product validation strategy.« less
  • From the SPN1 manual, the SPN1 Sunshine Pyranometer is one sensor with three output channels: 1) total (global) solar radiation, 2) diffuse radiation, and 3) sunshine status. The SPN1 measures short-wave radiation between 400nm and 2700nm in W.m-2. The Direct beam component of solar radiation can be calculated from the Total minus the Diffuse component. The Sunshine status output indicates whether the energy in the direct beam exceeds the World Meteorological Organization (WMO) standard threshold value of 120 W.m-2, using an algorithm based on the Total radiation, and the ratio of Total to Diffuse radiation. The radiation outputs have amore » cosine-corrected response. The advantages of the SPN1 are 1) It matches the WMO ‘Good Quality’ pyranometer classification. 2) It requires no shadow band or solar tracker. 3) There are no moving parts. 4) It does not need to be adjusted or repositioned to track the sun—a distinct advantage over shade rings or mechanical trackers. 5) It does not need to be oriented towards north. It will work accurately in any orientation as long as it is mounted horizontally. 6) It does not require knowledge of the latitude or longitude, and can be used at any latitude or longitude. 7) It measures sunshine hours as well as Total and Diffuse radiation. 8) The built-in heater allows use in wet or icy conditions.« less
  • The Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, which deployed the second ARM Mobile Facility (AMF2) aboard the Horizon Lines cargo container ship Spirit as it ran its regular route between Los Angeles, California and Honolulu, Hawaii, measured properties of clouds and precipitation, aerosols, radiation, and atmospheric, meteorological, and oceanic conditions with the goal of obtaining statistics of these properties to achieve better understanding of the transition between stratocumulus and cumulus cloud regimes that occur in that region. This Sc-Cu transition is poorly represented in models, and a major reason for this is the lack of high-quality andmore » comprehensive data that can be used to constrain, validate, and improve model representation of the transition. MAGIC consisted of 20 round trips between Los Angeles and Honolulu, and thus over three dozen transects through the transition, totaling nearly 200 days at sea between September, 2012 and October, 2013. During this time MAGIC collected a unique and unprecedented data set, including more than 550 successful radiosonde launches. An Intensive Observational Period (IOP) occurred in July, 2013 during which more detailed measurements of the atmospheric structure were made. MAGIC was very successful in its operations and overcame numerous logistical and technological challenges, clearly demonstrating the feasibility of a marine AMF2 deployment and the ability to make accurate measurements of clouds and precipitation, aerosols, and radiation while at sea.« less
  • The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There willmore » also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.« less