skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Apatite sequestration of selenium

Abstract

A method for sequestering selenium is disclosed. The method includes contacting selenium with a stannous modified apatite under conditions whereby the selenium is absorbed by the apatite.

Inventors:
; ; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1324968
Patent Number(s):
9,440,217
Application Number:
13/890,022
Assignee:
Sandia Corporation (Albuquerque, NM) SNL-A
DOE Contract Number:
AC04-94AL85000
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 May 08
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Moore, Robert C., Tucker, Mark D., Brady, Patrick V., and Rigali, Mark J. Apatite sequestration of selenium. United States: N. p., 2016. Web.
Moore, Robert C., Tucker, Mark D., Brady, Patrick V., & Rigali, Mark J. Apatite sequestration of selenium. United States.
Moore, Robert C., Tucker, Mark D., Brady, Patrick V., and Rigali, Mark J. 2016. "Apatite sequestration of selenium". United States. doi:. https://www.osti.gov/servlets/purl/1324968.
@article{osti_1324968,
title = {Apatite sequestration of selenium},
author = {Moore, Robert C. and Tucker, Mark D. and Brady, Patrick V. and Rigali, Mark J.},
abstractNote = {A method for sequestering selenium is disclosed. The method includes contacting selenium with a stannous modified apatite under conditions whereby the selenium is absorbed by the apatite.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Patent:

Save / Share:
  • A method for sequestering technetium is disclosed. The method includes contacting technetium with apatite under reducing conditions whereby the technetium is absorbed by the apatite.
  • We propose to develop an infiltration strategy that defines the precipitation rate of an apatite-forming solution and Sr-90 sequestration processes under variably saturated (low water content) conditions. We will develop this understanding through small-scale column studies, intermediate-scale two-dimensional (2-D) experiments, and numerical modeling to quantify individual and coupled processes associated with apatite formation and Sr-90 transport during and after infiltration of the Ca-citrate-PO4 solution. Development of capabilities to simulate these coupled biogeochemical processes during both injection and infiltration will be used to determine the most cost-effective means to emplace an in situ apatite barrier with a longevity of 300 yearsmore » to permanently sequester Sr-90 until it decays. Biogeochemical processes that will be investigated are citrate biodegradation and apatite precipitation rates at varying water contents as a function of water content. Coupled processes that will be investigated include the influence of apatite precipitation (which occupies pore space) on the hydraulic and transport properties of the porous media during infiltration.« less
  • The objective of this field test instruction is to provide technical guidance for aqueous injection emplacement of an extension apatite permeable reactive barrier (PRE) for the sequestration of strontium-90 (Sr-90) using a high concentration amendment formulation. These field activities will be conducted according to the guidelines established in DOE/RL-2010-29, 100-NR-2 Design Optimization Study, hereafter referred to as the DOS. The DOS supports the Federal Facility Agreement Consent Order (EPA et al., 1989), Milestone M-16-06-01, and 'Complete Construction of a Permeable Reactive Barrier at 100-N.' Injections of apatite precursor chemicals will occur at an equal distance intervals on each end ofmore » the existing PRE to extend the PRB from the existing 91 m (300 ft) to at least 274 m (900 ft). Field testing at the 100-N Area Apatite Treatability Test Site, as depicted on Figure 1, shows that the barrier is categorized by two general hydrologic conceptual models based on overall well capacity and contrast between the Hanford and Ringold hydraulic conductivities. The upstream portion of the original barrier, shown on Figure 1, is characterized by relatively low overall well specific capacity. This is estimated from well development data and a lower contrast in hydraulic conductivity between the Hanford formation and Ringold Formations. Comparison of test results from these two locations indicate that permeability contrast between the Hanford formation and Ringold Formation is significantly less over the upstream one-third of the barrier. The estimated hydraulic conductivity for the Hanford formation and Ringold Formation over the upstream portion of the barrier based on observations during emplacement of the existing 91 m (300 ft) PRB is approximately 12 and 10 m/day (39 and 32 ft/day), respectively (PNNL-17429). However, these estimates should be used as a rough guideline only, as significant variability in hydraulic conductivity is likely to be observed in the barrier extension wells, particularly those in the Ringold formation. The downstream portion of the original barrier, shown on Figure 1, is characterized by generally higher well specific capacity and a larger hydraulic conductivity contrast between the Hanford formation and Ringold Formation. Hydraulic conductivity rates for the Hanford formation and Ringold Formation over the downstream portion of the barrier were estimated at 29 and 9 m/day (95 and 29 ft/day), respectively (with the Hanford formation hydraulic conductivity being greater in the downstream portion than the upstream portion). Once again, it should be noted that the actual conductivities may vary significantly, and the values state above should only be used as a rough initial estimates. Optimum apatite emplacement has been shown to occur when injections targeting the Hanford formation and the Ringold Formation are performed separately. The remainder of this test instruction provides details for conducting these formation-targeted injections.« less
  • Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by relatedmore » chemical species, have similar properties.« less
  • Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite canmore » form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.« less