skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TOUGH3 v1.0

Abstract

TOUGH3 V1.0 capabilities to simulate multi-dimensional, multi-phase, multi-component, non-isothermal flow and transport in fractured porous media, with applications geosciences and reservoir engineering and other application areas. TOUGH3 V1.0 supports a number of different combinations of fluids and components (updated equation-of-state (EOS) modules from previous versions of TOUGH, including EOS1, EOS2, EOS3, EOS4, EOS5, EOS7, EOS7R, EOS7C, EOS7CA, EOS8, EOS9, EWASG, TMVOC, ECO2N, and ECO2M). This upgrade includes (a) expanded list of updated equation-of-state (EOS) modules, (b) new hysteresis models, (c) new implementation of parallel and solver functionalities, (d) new linear solver options based on PETSc libraries, (e) new automatic build system that automatically downloads and builds third-party libraries and TOUGH3, (f) new printout in CSV format, (g) dynamic memory allocation, (h) various user features, and (i) bug fixes.

Authors:
; ; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1324958
Report Number(s):
TOUGH3 v1.0; 004924MLTPL00
R&D Project: 830404000; 2016-190
DOE Contract Number:
AC02-05CH11231
Resource Type:
Software
Software Revision:
00
Software Package Number:
004924
Software CPU:
MLTPL
Source Code Available:
Yes
Other Software Info:
LBNL chooses to control all distribution of this software.
Country of Publication:
United States

Citation Formats

PAU, GEORGE, JUNG, YOOJIN, FINSTERLE, STEFAN, and ZHANG, YINGQI. TOUGH3 v1.0. Computer software. Vers. 00. USDOE. 14 Sep. 2016. Web.
PAU, GEORGE, JUNG, YOOJIN, FINSTERLE, STEFAN, & ZHANG, YINGQI. (2016, September 14). TOUGH3 v1.0 (Version 00) [Computer software].
PAU, GEORGE, JUNG, YOOJIN, FINSTERLE, STEFAN, and ZHANG, YINGQI. TOUGH3 v1.0. Computer software. Version 00. September 14, 2016.
@misc{osti_1324958,
title = {TOUGH3 v1.0, Version 00},
author = {PAU, GEORGE and JUNG, YOOJIN and FINSTERLE, STEFAN and ZHANG, YINGQI},
abstractNote = {TOUGH3 V1.0 capabilities to simulate multi-dimensional, multi-phase, multi-component, non-isothermal flow and transport in fractured porous media, with applications geosciences and reservoir engineering and other application areas. TOUGH3 V1.0 supports a number of different combinations of fluids and components (updated equation-of-state (EOS) modules from previous versions of TOUGH, including EOS1, EOS2, EOS3, EOS4, EOS5, EOS7, EOS7R, EOS7C, EOS7CA, EOS8, EOS9, EWASG, TMVOC, ECO2N, and ECO2M). This upgrade includes (a) expanded list of updated equation-of-state (EOS) modules, (b) new hysteresis models, (c) new implementation of parallel and solver functionalities, (d) new linear solver options based on PETSc libraries, (e) new automatic build system that automatically downloads and builds third-party libraries and TOUGH3, (f) new printout in CSV format, (g) dynamic memory allocation, (h) various user features, and (i) bug fixes.},
doi = {},
year = 2016,
month = 9,
note =
}

Software:
To order this software, request consultation services, or receive further information, please fill out the following request.

Save / Share:
  • The Analyzer for Radionuclide Source-Term with Chemical Transport (AREST-CT) is a scientific computer code designed for performance assessments of engineered barrier system (EBS) concepts for the underground storage of nuclear waste, including high-level, intermediate, and low-level wastes. The AREST-CT code has features for analyzing the degradation of and release of radionuclides from the waste form, chemical reactions that depend on time and space, and transport of the waste and other products through the EBS. This document provides a description of the verification testing that has been performed on the initial version of ARESTCT (V1.0). Software verification is the process ofmore » confirming that the models and algorithms have been correctly implemented into a computer code. Software verification for V1.0 consisted of testing the individual modules (unit tests) and a test of the fully-coupled model (integration testing). The integration test was done by comparing the results from AREST-CT with the results from the reactive transport code CIRF.A. The test problem consisted of a 1-D analysis of the release, transport, and precipitation of {sup 99}{Tc} in an idealized LLW disposal system. All verification tests showed that AREST-CT works properly and in accordance with design specifications.« less
  • The complex-wide waste flow analysis model (CWWFA) was developed to assist the Department of Energy (DOE) Environmental Management (EM) Office of Science and Technology (EM-50) to evaluate waste management scenarios with emphasis on identifying and prioritizing technology development opportunities to reduce waste flows and public risk. In addition, the model was intended to support the needs of the Complex-Wide Environmental Integration (EMI) team supporting the DOE`s Accelerating Cleanup: 2006 Plan. CWWFA represents an integrated environmental modeling system that covers the life cycle of waste management activities including waste generation, interim process storage, retrieval, characterization and sorting, waste preparation and processing,more » packaging, final interim storage, transport, and disposal at a final repository. The CWWFA shows waste flows through actual site-specific and facility-specific conditions. The system requirements for CWWFA are documented in the Technical Requirements Document (TRD). The TRD is intended to be a living document that will be modified over the course of the execution of CWWFA development. Thus, it is anticipated that CWWFA will continue to evolve as new requirements are identified (i.e., transportation, small sites, new streams, etc.). This report provides a documented basis for system verification of CWWFA requirements. System verification is accomplished through formal testing and evaluation to ensure that all performance requirements as specified in the TRD have been satisfied. A Requirement Verification Matrix (RVM) was used to map the technical requirements to the test procedures. The RVM is attached as Appendix A. Since February of 1997, substantial progress has been made toward development of the CWWFA to meet the system requirements. This system verification activity provides a baseline on system compliance to requirements and also an opportunity to reevaluate what requirements need to be satisfied in FY-98.« less
  • DCPT (Dual-Continuum Particle Tracker) V1.0 is a new software for simulating solute transport in the subsurface. It is based on the random-walk method for modeling transport processes such as advection, dispersion/diffusion, linear sorption, radioactive decay, and fracture-matrix mass exchange (in fractured porous media). The user shall provide flow-field and other parameters in the form of input files. In Comparison to several analytical and numerical solutions for a number of test cases, DCPT shows excellent performance in both accuracy and efficiency. This report serves as a user's manual of DCPT V1.0. It includes theoretical basis, numerical methods, software structure, input/output description,more » and examples.« less
  • Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the high energy physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. The Beam Tools are a set of C++ classes designed to facilitate the simulation of accelerator elements: r.f. cavities, magnets, absorbers, etc. These elements are constructed from Geant4 solid volumes like boxes, tubes, trapezoids, or spheers. There are many computer programs for beam physics simulations, but Geant4 is ideal to model a beammore » through a material or to integrate a beam line with a complex detector. There are many such examples in the current international High Energy Physics programs. For instance, an essential part of the R&D associated with the Neutrino Source/Muon Collider accelerator is the ionization cooling channel, which is a section of the system aimed to reduce the size of the muon beam in phase space. The ionization cooling technique uses a combination of linacs and light absorbers to reduce the transverse momentum and size of the beam, while keeping the longitudinal momentum constant. The MuCool/MICE (muon cooling) experiments need accurate simulations of the beam transport through the cooling channel in addition to a detailed simulation of the detectors designed to measure the size of the beam. The accuracy of the models for physics processes associated with muon ionization and multiple scattering is critical in this type of applications. Another example is the simulation of the interaction region in future accelerators. The high luminosity and background environments expected in the Next Linear Collider (NLC) and the Very Large Hadron Collider (VLHC) pose great demand on the detectors, which may be optimized by means of a simulation of the detector-accelerator interface.« less

To initiate an order for this software, request consultation services, or receive further information, fill out the request form below. You may also reach us by email at: .

OSTI staff will begin to process an order for scientific and technical software once the payment and signed site license agreement are received. If the forms are not in order, OSTI will contact you. No further action will be taken until all required information and/or payment is received. Orders are usually processed within three to five business days.

Software Request

(required)
(required)
(required)
(required)
(required)
(required)
(required)
(required)