skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Piezoresistive boron doped diamond nanowire

Abstract

A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

Inventors:
;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1324680
Patent Number(s):
9,441,940
Application Number:
14/601,908
Assignee:
UCHICAGO ARGONNE, LLC (Chicago, IL) ANL
DOE Contract Number:
AC02-06CH11357
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Jan 21
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Sumant, Anirudha V., and Wang, Xinpeng. Piezoresistive boron doped diamond nanowire. United States: N. p., 2016. Web.
Sumant, Anirudha V., & Wang, Xinpeng. Piezoresistive boron doped diamond nanowire. United States.
Sumant, Anirudha V., and Wang, Xinpeng. 2016. "Piezoresistive boron doped diamond nanowire". United States. doi:. https://www.osti.gov/servlets/purl/1324680.
@article{osti_1324680,
title = {Piezoresistive boron doped diamond nanowire},
author = {Sumant, Anirudha V. and Wang, Xinpeng},
abstractNote = {A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Patent:

Save / Share:
  • A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in themore » first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.« less
  • The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m.sup.1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 .mu.m/h.
  • Schottky diodes were fabricated using sputter deposited silver contacts to boron doped polycrystalline diamond thin films grown by a hot-filament chemical vapor deposition process with trimethyl borate as an {ital in} {ital situ} dopant source. High forward current density and a high forward-to-reverse current ratio were exhibited by these diodes. Current density-voltage and capacitance-voltage-frequency characteristics of these diodes are very similar to those of Schottky diodes fabricated using a single-crystal diamond substrate.
  • A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression.
  • The authors study Au catalyzed chemical vapor growth of Si{sub 1−x}Ge{sub x} alloyed nanowires in the presence of diborane, serving as a dopant precursor. Our experiments reveal that introduction of diborane has a significant effect on doping and morphology. Boron exposure poisons the Au catalyst surface, suppresses catalyst activity, and causes significantly tapered wires, as a result of conformal growth. The authors develop here a two-step method to obtain high density and taper-free boron doped Si{sub 1−x}Ge{sub x} alloy nanowires. The two-step process consists of: (1) growth of a small undoped Si{sub 1−x}Ge{sub x} section and (2) introduction of diboranemore » to form a boron doped Si{sub 1−x}Ge{sub x} section. The catalyst preparation step remarkably influences wire yield, quality and morphology. The authors show that dopant-ratio influences wire resistivity and morphology. Resistivity for high boron doped Si{sub 1−x}Ge{sub x} nanowire is 6 mΩ-cm. Four probe measurements show that it is possible to dope Si{sub 1−x}Ge{sub x} alloy nanowires with diborane.« less