skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015–2030

Abstract

This report describes a comprehensive effort undertaken by the National Renewable Energy Laboratory (NREL) to understand the cost of offshore wind energy for markets in the United States. The study models the cost impacts of a range of offshore wind locational cost variables for more than 7,000 potential coastal sites in U.S. offshore wind resource areas. It also assesses the impact of more than 50 technology innovations on potential future costs for both fixed-bottom and floating wind systems. Comparing these costs to an initial site-specific assessment of local avoided generating costs, the analysis provides a framework for estimating the economic potential for offshore wind. The analysis is intended to inform a broad set of stakeholders and enable an assessment of offshore wind as part of energy development and energy portfolio planning. It provides information that federal and state agencies and planning commissions could use to inform initial strategic decisions about offshore wind developments in the United States.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
OSTI Identifier:
1324526
Report Number(s):
NREL/TP-6A20-66579
DOE Contract Number:
AC36-08GO28308
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
29 ENERGY PLANNING, POLICY, AND ECONOMY; offshore wind energy; costs; wind resource areas; United States; assessment; fixed-bottom; floating; NREL

Citation Formats

Beiter, Philipp, Musial, Walter, Smith, Aaron, Kilcher, Levi, Damiani, Rick, Maness, Michael, Sirnivas, Senu, Stehly, Tyler, Gevorgian, Vahan, Mooney, Meghan, and Scott, George. A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015–2030. United States: N. p., 2016. Web. doi:10.2172/1324526.
Beiter, Philipp, Musial, Walter, Smith, Aaron, Kilcher, Levi, Damiani, Rick, Maness, Michael, Sirnivas, Senu, Stehly, Tyler, Gevorgian, Vahan, Mooney, Meghan, & Scott, George. A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015–2030. United States. doi:10.2172/1324526.
Beiter, Philipp, Musial, Walter, Smith, Aaron, Kilcher, Levi, Damiani, Rick, Maness, Michael, Sirnivas, Senu, Stehly, Tyler, Gevorgian, Vahan, Mooney, Meghan, and Scott, George. 2016. "A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015–2030". United States. doi:10.2172/1324526. https://www.osti.gov/servlets/purl/1324526.
@article{osti_1324526,
title = {A Spatial-Economic Cost-Reduction Pathway Analysis for U.S. Offshore Wind Energy Development from 2015–2030},
author = {Beiter, Philipp and Musial, Walter and Smith, Aaron and Kilcher, Levi and Damiani, Rick and Maness, Michael and Sirnivas, Senu and Stehly, Tyler and Gevorgian, Vahan and Mooney, Meghan and Scott, George},
abstractNote = {This report describes a comprehensive effort undertaken by the National Renewable Energy Laboratory (NREL) to understand the cost of offshore wind energy for markets in the United States. The study models the cost impacts of a range of offshore wind locational cost variables for more than 7,000 potential coastal sites in U.S. offshore wind resource areas. It also assesses the impact of more than 50 technology innovations on potential future costs for both fixed-bottom and floating wind systems. Comparing these costs to an initial site-specific assessment of local avoided generating costs, the analysis provides a framework for estimating the economic potential for offshore wind. The analysis is intended to inform a broad set of stakeholders and enable an assessment of offshore wind as part of energy development and energy portfolio planning. It provides information that federal and state agencies and planning commissions could use to inform initial strategic decisions about offshore wind developments in the United States.},
doi = {10.2172/1324526},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Technical Report:

Save / Share:
  • The potential for cost reduction and economic viability for offshore wind varies considerably within the United States. This analysis models the cost impact of a range of offshore wind locational cost variables across more than 7,000 potential coastal sites in the United States' offshore wind resource area. It also assesses the impact of over 50 technology innovations on potential future costs between 2015 and 2027 (Commercial Operation Date) for both fixed-bottom and floating wind systems. Comparing these costs to an initial assessment of local avoided generating costs, this analysis provides a framework for estimating the economic potential for offshore wind.more » Analyzing economic potential within this framework can help establish a refined understanding across industries of the technology and site-specific risks and opportunities associated with future offshore wind development. The findings from the original report indicate that under the modeled scenario, offshore wind can be expected to achieve significant cost reductions and may approach economic viability in some parts of the United States within the next 15 years.« less
  • This study describes an assessment of the spatial variation of levelized cost of energy (LCOE) and levelized avoided cost of energy to understand the economic viability of fixed-bottom and floating offshore wind technologies across major U.S. coastal areas between 2015 and 2030. In particular, this study offers insights into the available offshore wind resource by region at different levels of LCOE and an assessment of the economically viable resource capacity in the United States.
  • Output data from an NREL report entitled "An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030" (NREL/TP-6A20-67675), which analyzes the spatial variation of levelized cost of energy (LCOE) and levelized avoided cost of energy (LACE) to understand the economic potential of fixed-bottom and floating offshore wind technologies across more than 7,000 U.S. coastal sites between 2015 and 2030.
  • Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.
  • This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less