skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium metal doped electrodes for lithium-ion rechargeable chemistry

Abstract

An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

Inventors:
; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1324459
Patent Number(s):
9,444,090
Application Number:
14/347,957
Assignee:
The Regents of the University of California (Oakland, CA) LBNL
DOE Contract Number:
AC02-05CH11231
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Oct 05
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE

Citation Formats

Liu, Gao, Battaglia, Vince, and Wang, Lei. Lithium metal doped electrodes for lithium-ion rechargeable chemistry. United States: N. p., 2016. Web.
Liu, Gao, Battaglia, Vince, & Wang, Lei. Lithium metal doped electrodes for lithium-ion rechargeable chemistry. United States.
Liu, Gao, Battaglia, Vince, and Wang, Lei. 2016. "Lithium metal doped electrodes for lithium-ion rechargeable chemistry". United States. doi:. https://www.osti.gov/servlets/purl/1324459.
@article{osti_1324459,
title = {Lithium metal doped electrodes for lithium-ion rechargeable chemistry},
author = {Liu, Gao and Battaglia, Vince and Wang, Lei},
abstractNote = {An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Patent:

Save / Share:
  • Utilization of Fe/sub 2/O/sub 3/, or more generally M/sub 2/O/sub 3/ materials, after suitable electrochemical reaction with lithium, as improved non-metal lithium electrodes for the realization of lithium rechargeable batteries. These materials may be used as negative electrodes in replacement of lithium metal or lithium alloys in batteries using organic electrolytes, with the specific advantages of avoiding passivation and dendritic deposition effects during cycling.
  • BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygenmore » from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.« less
  • A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li.sub.1+xNi.sub..alpha.Co.sub..beta.Mn.sub..gamma.M'.sub..delta.O.sub.yF- .sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2,more » the .alpha. between 0 and 1, the .beta. between 0 and 1, the .gamma. between 0 and 2, the .delta. between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.« less
  • Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..
  • A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.