skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Organometallic-inorganic hybrid electrodes for lithium-ion batteries

Abstract

Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

Inventors:
; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1324447
Patent Number(s):
9,444,096
Application Number:
14/167,944
Assignee:
Battelle Memorial Institute (Richland, WA) PNNL
DOE Contract Number:
AC05-76RL01830
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Jan 29
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE

Citation Formats

Huang, Qian, Lemmon, John P., Choi, Daiwon, and Cosimbescu, Lelia. Organometallic-inorganic hybrid electrodes for lithium-ion batteries. United States: N. p., 2016. Web.
Huang, Qian, Lemmon, John P., Choi, Daiwon, & Cosimbescu, Lelia. Organometallic-inorganic hybrid electrodes for lithium-ion batteries. United States.
Huang, Qian, Lemmon, John P., Choi, Daiwon, and Cosimbescu, Lelia. Tue . "Organometallic-inorganic hybrid electrodes for lithium-ion batteries". United States. doi:. https://www.osti.gov/servlets/purl/1324447.
@article{osti_1324447,
title = {Organometallic-inorganic hybrid electrodes for lithium-ion batteries},
author = {Huang, Qian and Lemmon, John P. and Choi, Daiwon and Cosimbescu, Lelia},
abstractNote = {Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Sep 13 00:00:00 EDT 2016},
month = {Tue Sep 13 00:00:00 EDT 2016}
}

Patent:

Save / Share:
  • An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.
  • An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110)more » also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).« less
  • A new organic radical inorganic hybrid cathode comprised of PTMA/LiFePO4 composite system is developed and reported for the first time. The hybrid cathodes demonstrate high pulse power capability resulting in a significant improvement over the pure PTMA or LiFePO4 cathode which is very promising for transportation and other high pulse power applications that require long cycle life and lower cost.
  • A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0
  • An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containingmore » the electrodes.« less