skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conversion of 2,3-butanediol to butadiene

Abstract

A composition comprising 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by exposure to a catalyst comprising (a) M.sub.xO.sub.y wherein M is a rare earth metal, a group IIIA metal, Zr, or a combination thereof, and x and y are based upon an oxidation state of M, or (b) M.sup.3.sub.a(PO.sub.4).sub.b where M.sup.3 is a group IA, a group IIA metal, a group IIIA metal, or a combination thereof, and a and b are based upon the oxidation state of M.sup.3. Embodiments of the catalyst comprising M.sub.xO.sub.y may further include M.sup.2, wherein M.sup.2 is a rare earth metal, a group IIA metal, Zr, Al, or a combination thereof. In some embodiments, 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by a catalyst comprising M.sub.xO.sub.y, and the methyl vinyl carbinol is subsequently dehydrated to 1,3-butadiene by exposure to a solid acid catalyst.

Inventors:
; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1322100
Patent Number(s):
9,434,659
Application Number:
14/607,871
Assignee:
Battelle Memorial Institute (Richland, WA) PNNL
DOE Contract Number:
AC05-76RL01830
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Jan 28
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lilga, Michael A., Frye, Jr, John G., Lee, Suh-Jane, and Albrecht, Karl O. Conversion of 2,3-butanediol to butadiene. United States: N. p., 2016. Web.
Lilga, Michael A., Frye, Jr, John G., Lee, Suh-Jane, & Albrecht, Karl O. Conversion of 2,3-butanediol to butadiene. United States.
Lilga, Michael A., Frye, Jr, John G., Lee, Suh-Jane, and Albrecht, Karl O. 2016. "Conversion of 2,3-butanediol to butadiene". United States. doi:. https://www.osti.gov/servlets/purl/1322100.
@article{osti_1322100,
title = {Conversion of 2,3-butanediol to butadiene},
author = {Lilga, Michael A. and Frye, Jr, John G. and Lee, Suh-Jane and Albrecht, Karl O.},
abstractNote = {A composition comprising 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by exposure to a catalyst comprising (a) M.sub.xO.sub.y wherein M is a rare earth metal, a group IIIA metal, Zr, or a combination thereof, and x and y are based upon an oxidation state of M, or (b) M.sup.3.sub.a(PO.sub.4).sub.b where M.sup.3 is a group IA, a group IIA metal, a group IIIA metal, or a combination thereof, and a and b are based upon the oxidation state of M.sup.3. Embodiments of the catalyst comprising M.sub.xO.sub.y may further include M.sup.2, wherein M.sup.2 is a rare earth metal, a group IIA metal, Zr, Al, or a combination thereof. In some embodiments, 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by a catalyst comprising M.sub.xO.sub.y, and the methyl vinyl carbinol is subsequently dehydrated to 1,3-butadiene by exposure to a solid acid catalyst.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Patent:

Save / Share:
  • Embodiments of an integrated method for step-wise conversion of 2,3-butanediol to 2-butanol, and optionally to hydrocarbons, are disclosed. The method includes providing an acidic catalyst, exposing a composition comprising aqueous 2,3-butanediol to the acidic catalyst to produce an intermediate composition comprising methyl ethyl ketone, providing a hydrogenation catalyst that is spatially separated from the acidic catalyst, and subsequently exposing the intermediate composition to the hydrogenation catalyst to produce a composition comprising 2-butanol. The method may further include subsequently exposing the composition comprising 2-butanol to a deoxygenation catalyst, and deoxygenating the 2-butanol to form hydrocarbons. In some embodiments, the hydrocarbons comprisemore » olefins, such as butenes, and the method may further include subsequently exposing the hydrocarbons to a hydrogenation catalyst to form saturated hydrocarbons.« less
  • By means of pulse chromatography on a phosphoric acid catalyst consisting of a mixture of phosphoric acid and sodium phosphates supported on quartz, a study has been made of the acid-catalyzed conversions of 3-methyl-1,3-butanediol (MBD) at 120-150/sup 0/C. It has been established that the principal products are isoprene and isopropenylethyl alcohol; at long contact times, the alcohol is also dehydrated to isoprene. It has been shown that the reaction of MBD conversion is irreversible and is first-order with respect to the reactant. Rate constants have been determined for individual stages of the process.
  • The nonnatural alcohol 1,3-butanediol (1,3-BDO) is a valuable building block for the synthesis of various polymers. One of the potential pathways for the biosynthesis of 1,3-BDO includes the biotransformation of acetaldehyde to 1,3-BDO via 3-hydroxybutanal (3-HB) using aldolases and aldo-keto reductases (AKRs). This pathway requires an AKR selective for 3-HB, but inactive toward acetaldehyde, so it can be used for one-pot synthesis. In this work, we screened more than 20 purified uncharacterized AKRs for 3-HB reduction and identified 10 enzymes with significant activity and nine proteins with detectable activity. PA1127 fromPseudomonas aeruginosashowed the highest activity and was selected for comparativemore » studies with STM2406 fromSalmonella entericaserovar Typhimurium, for which we have determined the crystal structure. Both AKRs used NADPH as a cofactor, reduced a broad range of aldehydes, and showed low activities toward acetaldehyde. The crystal structures of STM2406 in complex with cacodylate or NADPH revealed the active site with bound molecules of a substrate mimic or cofactor. Site-directed mutagenesis of STM2406 and PA1127 identified the key residues important for the activity against 3-HB and aromatic aldehydes, which include the residues of the substrate-binding pocket and C-terminal loop. Our results revealed that the replacement of the STM2406 Asn65 by Met enhanced the activity and the affinity of this protein toward 3-HB, resulting in a 7-fold increase ink cat/K m. Our work provides further insights into the molecular mechanisms of the substrate selectivity of AKRs and for the rational design of these enzymes toward new substrates. IMPORTANCEIn this study, we identified several aldo-keto reductases with significant activity in reducing 3-hydroxybutanal to 1,3-butanediol (1,3-BDO), an important commodity chemical. Biochemical and structural studies of these enzymes revealed the key catalytic and substrate-binding residues, including the two structural determinants necessary for high activity in the biosynthesis of 1,3-BDO. This work expands our understanding of the molecular mechanisms of the substrate selectivity of aldo-keto reductases and demonstrates the potential for protein engineering of these enzymes for applications in the biocatalytic production of 1,3-BDO and other valuable chemicals.« less