skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: W14_CONTAMINANTREMEDIATION: High Performance Computing (HPC) for Multi-scale Decision Analyses: From Pore-scale Processes to Field-scale Contaminant Remediation

Abstract

This report describes computing terms relating to contaminant remediation efforts used at LANL.

Authors:
 [1];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Environmental Management (EM)
OSTI Identifier:
1321711
Report Number(s):
LA-UR-16-26747
TRN: US1601892
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING; 12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 58 GEOSCIENCES; LANL; REMEDIAL ACTION; DECISION MAKING; CONTAMINATION; AQUIFERS; PORE STRUCTURE; M CODES; Z CODES; Computer Science; Earth Sciences; Mathematics; ZEM/MADS

Citation Formats

Vesselinov, Velimir Valentinov, O'Malley, Daniel, and Alexandrov, Boian. W14_CONTAMINANTREMEDIATION: High Performance Computing (HPC) for Multi-scale Decision Analyses: From Pore-scale Processes to Field-scale Contaminant Remediation. United States: N. p., 2016. Web. doi:10.2172/1321711.
Vesselinov, Velimir Valentinov, O'Malley, Daniel, & Alexandrov, Boian. W14_CONTAMINANTREMEDIATION: High Performance Computing (HPC) for Multi-scale Decision Analyses: From Pore-scale Processes to Field-scale Contaminant Remediation. United States. doi:10.2172/1321711.
Vesselinov, Velimir Valentinov, O'Malley, Daniel, and Alexandrov, Boian. 2016. "W14_CONTAMINANTREMEDIATION: High Performance Computing (HPC) for Multi-scale Decision Analyses: From Pore-scale Processes to Field-scale Contaminant Remediation". United States. doi:10.2172/1321711. https://www.osti.gov/servlets/purl/1321711.
@article{osti_1321711,
title = {W14_CONTAMINANTREMEDIATION: High Performance Computing (HPC) for Multi-scale Decision Analyses: From Pore-scale Processes to Field-scale Contaminant Remediation},
author = {Vesselinov, Velimir Valentinov and O'Malley, Daniel and Alexandrov, Boian},
abstractNote = {This report describes computing terms relating to contaminant remediation efforts used at LANL.},
doi = {10.2172/1321711},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Technical Report:

Save / Share:
  • This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimatingmore » effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE legacy waste problems.« less
  • This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site - specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii)more » estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE’s legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation of secondary mineral precipitates (cancrinite), conducting experiments under conditions with and without Al allowed us to experimentally separate the conditions that lead to quartz dissolution from the conditions that lead to quartz dissolution plus cancrinite precipitation. Consistent with our expectations, in the experiments without Al, there was a substantial reduction in volume of the solid matrix. With Al there was a net increase in the volume of the solid matrix. The rate and extent of reaction was found to increase with temperature. These results demonstrate a successful effort to identify conditions that lead to increases and conditions that lead to decreases in solid matrix volume due to reactions of caustic tank wastes with quartz sands. In addition, we have begun to work with slightly larger, intermediate-scale columns packed with Hanford natural sediments and quartz. Similar dissolution and precipitation were observed in these colums. The measurements are being interpreted with reactive transport modeling using STOMP; preliminary observations are reported here. 2) Multi-Scale Imaging and Analysis. Mineral dissolution and precipitation rates within a porous medium will be different in different pores due to natural heterogeneity and the heterogeneity that is created from the reactions themselves. We used a combination of X-ray computed microtomography, backscattered electron and energy dispersive X-ray spectroscopy combined with computational image analysis to quantify pore structure, mineral distribution, structure changes and fluid-air and fluid-grain interfaces. Results and Key Findings: Three of the columns from the reactive flow experiments at PNNL (S1, S3, S4) were imaged using 3D X-ray computed microtomography (XCMT) at BNL and analyzed using 3DMA-rock at SUNY Stony Brook. The imaging results support the mass balance findings reported by Dr. Um’s group, regarding the substantial dissolution of quartz in column S1. An important observation is that of grain movement accompanying dissolution in the unconsolidated media. The resultant movement changes the anticipated findings for pore and throat size distributions. For column S3, with cancrinite precipitation accompanying quartz dissolution, the precitiation halts much of the grain movement and more systematic distributions are obtained. Column S4, which was sealed with caustic solution acted as a control sample to study reactive effects during periods when columns S1 and S3 were sealed between flow experiments. No significant changes are observed in S4 with time. At Princeton, the imaging and analysis work focused on the effects of mineral precipitation and advancing our understanding of the impacts of these reactions on reactive transport in subsurface sediments. These findings are described in detail below, and have been published in L.E. Crandell, C.A. Peters, W. Um, K.W. Jones, W.B. Lindquist, 2012. “Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes.” Journal of Contaminant Hydrology 131 (2012) 89–99. 3) Multi-Scale Modeling and Up-Scaling. Using an array of modeling approaches, we examined pore-scale variations in physical and mineralogical properties, flow velocities, and (for unsaturated conditions) wetting fluid/grain surface areas, and permeability evolution. Results and Key Findings: To predict the column permeability and estimate the impact of mineral precipitation, pore network models were informed using the pore and throat-size distributions from the imaging analyses. As a comparison, supplemental analyses were performed on Viking sandstone specimens from the Alberta sedimentary basin. In another part of this study we sought to understand how carbonate rocks in contact with CO2-rich brines change due to the precipitation or dissolution of fast-reacting minerals such as calcite and dolomite. Using a newly developed reactive-transport pore-network model we were able to identify the conditions that lead to significant permeability changes. These findings are presented below and are compiled in a publication that is under review: J.P. Nogues, J.P. Fitts, M.A. Celia, C.A. Peters. “Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks”, Submitted: Water Resources Research, 2013.« less
  • The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused onmore » multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.« less
  • The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer focus research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007, CY 2008, and CY 2009 progress summarized in preceding reports. A projectmore » peer review was held in March 2010, and the IFRC project has responded to all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of “Modeling” and “Well-Field Mitigation” plans that are now posted on the Hanford IFRC web-site. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2010 including the quantification of well-bore flows in the fully screened wells and the testing of means to mitigate them; the development of site geostatistical models of hydrologic and geochemical properties including the distribution of U; developing and parameterizing a reactive transport model of the smear zone that supplies contaminant U to the groundwater plume; performance of a second passive experiment of the spring water table rise and fall event with a associated multi-point tracer test; performance of downhole biogeochemical experiments where colonization substrates and discrete water and gas samplers were deployed to the lower aquifer zone; and modeling of past injection experiments for model parameterization, deconvolution of well-bore flow effects, system understanding, and publication. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, and have now implemented a new strategy for this activity to bypass an approach that was found unworkable. An important focus of CY 2010 activities has been infrastructure modification to the IFRC site to eliminate vertical well bore flows in the fully screened wells. The mitigation procedure was carefully evaluated and is now being implementated. A new experimental campaign is planned for early spring 2011 that will utilize the modified well-field for a U reactive transport experiment in the upper aquifer zone. Preliminary geophysical monitoring experiments of rainwater recharge in the vadose zone have been initiated with promising results, and a controlled infiltration experiment to evaluate U mobilization from the vadose zone is now under planning for the September 2011. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes.« less