skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coupled Thermal-Hydrologic-Chemical Coupled Model for In-Drift Disposal Test

Abstract

The simulation work presented in this report supports DOE-NE Used Fuel Disposition Campaign (UFDC) goals related to the development of drift scale in-situ field testing of heat-generating nuclear waste (HGNW) in salt formations. Numerical code verification and validation is an important part of the lead-up to field testing, allowing exploration of potential heater emplacement designs, monitoring locations, and perhaps most importantly the ability to predict heat and mass transfer around an evolving test. Such predictions are crucial for the design and location of sampling and monitoring that can be used to validate our understanding of a drift scale test that is likely to span several years.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1321707
Report Number(s):
LA-UR-15-27442
TRN: US1700272
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; RADIOACTIVE WASTE DISPOSAL; VALIDATION; MASS TRANSFER; HEAT TRANSFER; RADIOACTIVE WASTES; MONITORING; FIELD TESTS; SPENT FUELS; HEATERS; POSITIONING; SALT DEPOSITS; SAMPLING; F CODES; COMPUTERIZED SIMULATION; VERIFICATION; MATHEMATICAL MODELS; HYDROLOGY; Environmental Protection; Simulations thermal hydrological chemical

Citation Formats

Jordan, Amy B., Zyvoloski, George Anthony, Weaver, Douglas James, Otto, Shawn, and Stauffer, Philip H. Coupled Thermal-Hydrologic-Chemical Coupled Model for In-Drift Disposal Test. United States: N. p., 2016. Web. doi:10.2172/1321707.
Jordan, Amy B., Zyvoloski, George Anthony, Weaver, Douglas James, Otto, Shawn, & Stauffer, Philip H. Coupled Thermal-Hydrologic-Chemical Coupled Model for In-Drift Disposal Test. United States. doi:10.2172/1321707.
Jordan, Amy B., Zyvoloski, George Anthony, Weaver, Douglas James, Otto, Shawn, and Stauffer, Philip H. 2016. "Coupled Thermal-Hydrologic-Chemical Coupled Model for In-Drift Disposal Test". United States. doi:10.2172/1321707. https://www.osti.gov/servlets/purl/1321707.
@article{osti_1321707,
title = {Coupled Thermal-Hydrologic-Chemical Coupled Model for In-Drift Disposal Test},
author = {Jordan, Amy B. and Zyvoloski, George Anthony and Weaver, Douglas James and Otto, Shawn and Stauffer, Philip H.},
abstractNote = {The simulation work presented in this report supports DOE-NE Used Fuel Disposition Campaign (UFDC) goals related to the development of drift scale in-situ field testing of heat-generating nuclear waste (HGNW) in salt formations. Numerical code verification and validation is an important part of the lead-up to field testing, allowing exploration of potential heater emplacement designs, monitoring locations, and perhaps most importantly the ability to predict heat and mass transfer around an evolving test. Such predictions are crucial for the design and location of sampling and monitoring that can be used to validate our understanding of a drift scale test that is likely to span several years.},
doi = {10.2172/1321707},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Technical Report:

Save / Share:
  • Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding amore » variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.« less
  • A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is usefulmore » in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.« less
  • No abstract prepared.
  • This is a progress report on the Large Block Test (LBT) project. The purpose of the LBT is to study some of the coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near field of a nuclear waste repository under controlled boundary conditions. To do so, a large block of Topopah Spring tuff will be heated from within for about 4 to 6 months, then cooled down for about the same duration. Instruments to measure temperature, moisture content, stress, displacement, and chemical changes will be installed in three directions in the block. Meanwhile, laboratory tests will be conducted on small blocks to investigatemore » individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The fractures in the large block will be characterized from five exposed surfaces. The minerals on fracture surfaces will be studied before and after the test. The results from the LBT will be useful for testing and building confidence in models that will be used to predict TMHC processes in a repository. The boundary conditions to be controlled on the block include zero moisture flux and zero heat flux on the sides, constant temperature on the top, and constant stress on the outside surfaces of the block. To control these boundary conditions, a load-retaining frame is required. A 3 x 3 x 4.5 m block of Topopah Spring tuff has been isolated on the outcrop at Fran Ridge, Nevada Test Site. Pre-test model calculations indicate that a permeability of at least 10{sup -15} m{sup 2} is required so that a dryout zone can be created within a practical time frame when the block is heated from within. Neutron logging was conducted in some of the vertical holes to estimate the initial moisture content of the block. It was found that about 60 to 80% of the pore volume of the block is saturated with water. Cores from the vertical holes have been used to map the fractures and to determine the properties of the rock. A current schedule is included in the report.« less
  • The international Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive waste repositories. Three principal activities in the HYDROCOIN Project are Level 1, verification and benchmarking of hydrologic codes; Level 2, validation of hydrologic models; and Level 3, sensitivity and uncertainty analyses of the models and codes. This report presents a test case defined for the HYDROCOIN Level 3 activity to explore the feasibility of applying various sensitivity-analysis methodologies to a highly nonlinear model of isothermal, partially saturated flow through fractured tuff, and to develop modelingmore » approaches to implement the methodologies for sensitivity analysis. These analyses involve an idealized representation of a repository sited above the water table in a layered sequence of welded and nonwelded, fractured, volcanic tuffs. The analyses suggested here include one-dimensional, steady flow; one-dimensional, nonsteady flow; and two-dimensional, steady flow. Performance measures to be used to evaluate model sensitivities are also defined; the measures are related to regulatory criteria for containment of high-level radioactive waste. 14 refs., 5 figs., 4 tabs.« less