skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Precision Astrometry with Adaptive Optics: Towards Exoplanet Mass Measurement From the Ground

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1321432
Report Number(s):
LLNL-CONF-701398
DOE Contract Number:
AC52-07NA27344
Resource Type:
Conference
Resource Relation:
Conference: Presented at: SPIE Astronomical Telescopes and Instrumentation, Edinburgh, United Kingdom, Jun 26 - Jul 01, 2016
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Ammons, S M, Garcia, E V, Salama, M, Neichel, B, Lu, J, Marois, C, Macintosh, B, Savransky, D, Bendek, E, Guyon, O, Marin, E, Sivo, G, Garrel, V, and Service, M. Precision Astrometry with Adaptive Optics: Towards Exoplanet Mass Measurement From the Ground. United States: N. p., 2016. Web.
Ammons, S M, Garcia, E V, Salama, M, Neichel, B, Lu, J, Marois, C, Macintosh, B, Savransky, D, Bendek, E, Guyon, O, Marin, E, Sivo, G, Garrel, V, & Service, M. Precision Astrometry with Adaptive Optics: Towards Exoplanet Mass Measurement From the Ground. United States.
Ammons, S M, Garcia, E V, Salama, M, Neichel, B, Lu, J, Marois, C, Macintosh, B, Savransky, D, Bendek, E, Guyon, O, Marin, E, Sivo, G, Garrel, V, and Service, M. 2016. "Precision Astrometry with Adaptive Optics: Towards Exoplanet Mass Measurement From the Ground". United States. doi:. https://www.osti.gov/servlets/purl/1321432.
@article{osti_1321432,
title = {Precision Astrometry with Adaptive Optics: Towards Exoplanet Mass Measurement From the Ground},
author = {Ammons, S M and Garcia, E V and Salama, M and Neichel, B and Lu, J and Marois, C and Macintosh, B and Savransky, D and Bendek, E and Guyon, O and Marin, E and Sivo, G and Garrel, V and Service, M},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • We use Hubble Space Telescope fine guidance sensor astrometry and high-cadence radial velocities for HD 136118 from the Hobby-Eberly Telescope with archival data from Lick to determine the complete set of orbital parameters for HD 136118 b. We find an orbital inclination for the candidate exoplanet of i{sub b} = 163.{sup 0}1 +- 3.{sup 0}0. This establishes the actual mass of the object, M{sub b} = 42{sup +11}{sub -18} M{sub J} , in contrast to the minimum mass determined from the radial velocity data only, M{sub b} sin i approx 12 M{sub J} . Therefore, the low-mass companion to HDmore » 136118 is now identified as a likely brown dwarf residing in the 'brown dwarf desert'.« less
  • We present a new stellar dynamical mass measurement of the black hole in the nearby, S0 galaxy NGC 3998. By combining laser guide star adaptive optics observations obtained with the OH-Suppressing Infrared Imaging Spectrograph on the Keck II telescope with long-slit spectroscopy from the Hubble Space Telescope and the Keck I telescope, we map out the stellar kinematics on both small spatial scales, well within the black hole sphere of influence, and large scales. We find that the galaxy is rapidly rotating and exhibits a sharp central peak in the velocity dispersion. Using the kinematics and the stellar luminosity densitymore » derived from imaging observations, we construct three-integral, orbit-based, triaxial stellar dynamical models. We find the black hole has a mass of M{sub BH} = (8.1{sup +2.0}{sub -1.9}) Multiplication-Sign 10{sup 8} M{sub Sun }, with an I-band stellar mass-to-light ratio of M/L = 5.0{sup +0.3}{sub -0.4} M{sub Sun }/L{sub Sun} (3{sigma} uncertainties), and that the intrinsic shape of the galaxy is very round, but oblate. With the work presented here, NGC 3998 is now one of a very small number of galaxies for which both stellar and gas dynamical modeling have been used to measure the mass of the black hole. The stellar dynamical mass is nearly a factor of four larger than the previous gas dynamical black hole mass measurement. Given that this cross-check has so far only been attempted on a few galaxies with mixed results, carrying out similar studies in other objects is essential for quantifying the magnitude and distribution of the cosmic scatter in the black hole mass-host galaxy relations.« less
  • We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.
  • Hubble Space Telescope Fine Guidance Sensor astrometric observations of the G4 IV star HD 38529 are combined with the results of the analysis of extensive ground-based radial velocity (RV) data to determine the mass of the outermost of two previously known companions. Our new RVs obtained with the Hobby-Eberly Telescope and velocities from the Carnegie-California group now span over 11 yr. With these data we obtain improved RV orbital elements for both the inner companion, HD 38529b, and the outer companion, HD 38529c. We identify a rotational period of HD 38529 (P {sub rot} = 31.65 {+-} 0fd17) with Finemore » Guidance Sensor photometry. The inferred star spot fraction is consistent with the remaining scatter in velocities being caused by spot-related stellar activity. We then model the combined astrometric and RV measurements to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size due to HD 38529c. For HD 38529c we find P = 2136.1 {+-} 0.3 d, perturbation semimajor axis {alpha} = 1.05 {+-} 0.06 mas, and inclination i = 48.{sup 0}3 {+-} 3.{sup 0}7. Assuming a primary mass M {sub *} = 1.48 M {sub sun}, we obtain a companion mass M{sub c} = 17.6{sup +1.5} {sub -1.2} M {sub Jup}, 3{sigma} above a 13 M {sub Jup} deuterium burning, brown dwarf lower limit. Dynamical simulations incorporating this accurate mass for HD 38529c indicate that a near-Saturn mass planet could exist between the two known companions. We find weak evidence of an additional low amplitude signal that can be modeled as a planetary-mass ({approx}0.17 M {sub Jup}) companion at P {approx}194 days. Including this component in our modeling lowers the error of the mass determined for HD 38529c. Additional observations (RVs and/or Gaia astrometry) are required to validate an interpretation of HD 38529d as a planetary-mass companion. If confirmed, the resulting HD 38529 planetary system may be an example of a 'Packed Planetary System'.« less
  • The practical use of astrometry to detect exoplanets via the reflex motion of the parent star depends critically on the elimination of systematic floors in imaging systems. In the diffractive pupil technique proposed for space-based detection of exo-earths, extended diffraction spikes generated by a dotted primary mirror are referenced against a wide-field grid of background stars to calibrate changing optical distortion and achieve microarcsecond astrometric precision on bright targets (Guyon et al. 2010). We describe applications of this concept to ground-based uncrowded astrometry using a diffractive, monopupil telescope and a wide-field camera to image as many as {approx}4000 background referencemore » stars. Final relative astrometric precision is limited by differential tip/tilt jitter caused by high altitude layers of turbulence. A diffractive 3-meter telescope is capable of reaching {approx}35 {micro}as relative astrometric error per coordinate perpendicular to the zenith vector in three hours on a bright target star (I < 10) in fields of moderate stellar density ({approx}40 stars arcmin{sup -2} with I < 23). Smaller diffractive apertures (D < 1 m) can achieve 100-200 {micro}as performance with the same stellar density and exposure time and a large telescope (6.5-10 m) could achieve as low as 10 {micro}as, nearly an order of magnitude better than current space-based facilities. The diffractive pupil enables the use of larger fields of view through calibration of changing optical distortion as well as brighter target stars (V < 6) by preventing star saturation. Permitting the sky to naturally roll to average signals over many thousands of pixels can mitigate the effects of detector imperfections.« less