skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Advanced Simulation and Computing FY17 Implementation Plan, Version 0

Abstract

The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifyingmore » critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less

Authors:
 [1];  [2];  [3];  [4];  [5]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  4. National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development
  5. National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1321427
Report Number(s):
LLNL-TR-701390
DOE Contract Number:
AC52-07NA27344
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
22 GENERAL STUDIES OF NUCLEAR REACTORS; 97 MATHEMATICS AND COMPUTING

Citation Formats

McCoy, Michel, Archer, Bill, Hendrickson, Bruce, Wade, Doug, and Hoang, Thuc. Advanced Simulation and Computing FY17 Implementation Plan, Version 0. United States: N. p., 2016. Web. doi:10.2172/1321427.
McCoy, Michel, Archer, Bill, Hendrickson, Bruce, Wade, Doug, & Hoang, Thuc. Advanced Simulation and Computing FY17 Implementation Plan, Version 0. United States. doi:10.2172/1321427.
McCoy, Michel, Archer, Bill, Hendrickson, Bruce, Wade, Doug, and Hoang, Thuc. 2016. "Advanced Simulation and Computing FY17 Implementation Plan, Version 0". United States. doi:10.2172/1321427. https://www.osti.gov/servlets/purl/1321427.
@article{osti_1321427,
title = {Advanced Simulation and Computing FY17 Implementation Plan, Version 0},
author = {McCoy, Michel and Archer, Bill and Hendrickson, Bruce and Wade, Doug and Hoang, Thuc},
abstractNote = {The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.},
doi = {10.2172/1321427},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Technical Report:

Save / Share:
  • The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individualmore » work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.« less
  • This document provides a guide to the process of conducting software appraisals under the Sandia National Laboratories (SNL) ASC Program. The goal of this document is to describe a common methodology for planning, conducting, and reporting results of software appraisals thereby enabling: development of an objective baseline on implementation of the software quality engineering (SQE) practices identified in the ASC Software Quality Plan across the ASC Program; feedback from project teams on SQE opportunities for improvement; identification of strengths and opportunities for improvement for individual project teams; guidance to the ASC Program on the focus of future SQE activities Documentmore » contents include process descriptions, templates to promote consistent conduct of appraisals, and an explanation of the relationship of this procedure to the SNL ASC software program.« less
  • The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.
  • The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.