skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Demonstration of a prototype hydrogen sensor and electronics package

Abstract

This is a progress report for the demonstration of a prototype hydrogen sensor and electronics package. There are five tasks associated with this, and four have been completed as of August 2016: Station Demonstration and Site Recommendation, Order Sensor Equipment, Build Sensors, and Install Sensors. The final task to be completed is Sensor Demonstration and Data Analysis, and expected completion date is January 26, 2017. This progress report details each of the tasks and goes into detail about what is currently being worked on, along with the budget and planned work for July 27, 2016 to January 26, 2017.

Authors:
 [1];  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1321420
Report Number(s):
LLNL-TR-699443
DOE Contract Number:
AC52-07NA27344
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Wu, Amanda S., and Brosha, Eric. Demonstration of a prototype hydrogen sensor and electronics package. United States: N. p., 2016. Web. doi:10.2172/1321420.
Wu, Amanda S., & Brosha, Eric. Demonstration of a prototype hydrogen sensor and electronics package. United States. doi:10.2172/1321420.
Wu, Amanda S., and Brosha, Eric. 2016. "Demonstration of a prototype hydrogen sensor and electronics package". United States. doi:10.2172/1321420. https://www.osti.gov/servlets/purl/1321420.
@article{osti_1321420,
title = {Demonstration of a prototype hydrogen sensor and electronics package},
author = {Wu, Amanda S. and Brosha, Eric},
abstractNote = {This is a progress report for the demonstration of a prototype hydrogen sensor and electronics package. There are five tasks associated with this, and four have been completed as of August 2016: Station Demonstration and Site Recommendation, Order Sensor Equipment, Build Sensors, and Install Sensors. The final task to be completed is Sensor Demonstration and Data Analysis, and expected completion date is January 26, 2017. This progress report details each of the tasks and goes into detail about what is currently being worked on, along with the budget and planned work for July 27, 2016 to January 26, 2017.},
doi = {10.2172/1321420},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Technical Report:

Save / Share:
  • This is the second progress report on the demonstration of a prototype hydrogen sensor and electronics package. It goes into detail about the five tasks, four of which are already completed as of August 2016, with the final to be completed by January 26, 2017. Then the budget is detailed along with the planned work for May 27, 2016 to July 27, 2016.
  • This report is the final technical report for DOE Program DE-FC36-04GO14301 titled “Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications”. Due to the public nature of this report some of the content reported in confidential reports and meetings to the DOE is not covered in detail in this report and some of the content has been normalized to not show actual values. There is a comparison of the projects accomplishments with the objectives, an overview of some of the key subsystem work, and a review of the three levels of prototypes demonstrated during the program. There is alsomore » a description of the eventual commercial product and market this work is leading towards. The work completed under this program has significantly increased the understanding of how Direct Methanol Fuel Cells (DMFC) can be deployed successfully to power consumer electronic devices. The prototype testing has demonstrated the benefits a direct methanol fuel cell system has over batteries typically used for powering consumer electronic devices. Three generations of prototypes have been developed and tested for performance, robustness and life. The technologies researched and utilized in the fuel cell stack and related subsystems for these prototypes are leveraged from advances in other industries such as the hydrogen fueled PEM fuel cell industry. The work under this program advanced the state of the art of direct methanol fuel cells. The system developed by MTI micro fuel cells aided by this program differs significantly from conventional DMFC designs and offers compelling advantages in the areas of performance, life, size, and simplicity. The program has progressed as planned resulting in the completion of the scope of work and available funding in December 2008. All 18 of the final P3 prototypes builds have been tested and the results showed significant improvements over P2 prototypes in build yield, initial performance, and durability. The systems have demonstrated robust operation when tested at various orientations, temperatures, and humidity levels. Durability testing has progressed significantly over the course of the program. MEA, engine, and system level steady state testing has demonstrated degradation rates acceptable for initial product introduction. Test duration of over 5000 hrs has been achieved at both the MEA and breadboard system level. P3 level prototype life testing on engines (stacks with reactant conditioning) showed degradation rates comparable to carefully constructed lab fixtures. This was a major improvement over the P2 and P1 engine designs, which exhibited substantial reductions in life and performance between the lab cell and the actual engine. Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.« less
  • No abstract prepared.
  • This report describes an advanced multichannel, on-line optical system for the non-contact measurement of forehearth glass melt temperatures at depth. The analyzer employs multiple narrow infrared (IR) band measurements of glass radiation to reconstruct the glass temperature profiles at depth. The TAS replaces expensive Tri-plex thermocouples, which frequently have service lives as short as 6 months to 1 years. By using passive non-contact sensor heads and fiber optic cables, temperature sensitive electronic components can be located at a safe distance from the hostile process environment. This provides significantly better reliability of the vulnerable electro-optic components and ready access for maintenance.
  • No abstract prepared.