skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tethered Balloon Systems in the Near-Surface Atmosphere

Authors:
Publication Date:
Research Org.:
SPEC, Inc.
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1320882
Report Number(s):
Final Scientific/Technical Report
DOE Contract Number:
SC0006269
Type / Phase:
SBIR
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English

Citation Formats

Krause, Nick. Tethered Balloon Systems in the Near-Surface Atmosphere. United States: N. p., 2016. Web.
Krause, Nick. Tethered Balloon Systems in the Near-Surface Atmosphere. United States.
Krause, Nick. 2016. "Tethered Balloon Systems in the Near-Surface Atmosphere". United States. doi:.
@article{osti_1320882,
title = {Tethered Balloon Systems in the Near-Surface Atmosphere},
author = {Krause, Nick},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Technical Report:
This technical report may be protected. To request the document, click here.
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that may hold this item. Keep in mind that many technical reports are not cataloged in WorldCat.

Save / Share:
  • Water vapor is the most important greenhouse gas, and its measurement is currently so imprecise that long term trends are difficult to document. This problem was the focus of a Water Vapor Intensive Operations Period (WVIOP) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site near Billings, OK in September 1996. The part of this comparison involved tethered-balloon and kite profiling of meteorological parameters and dew-point measurements using a light-weight chilled-mirror system. The tethered balloon system was used when the winds were less than about 12 m/s. The kite system was used when winds were in the 12--15more » m/s range. In this abstract, the authors will focus on comparisons on boundary-layer profiles using the tethered systems and conventional rawinsonde measurements at ARM SGP. The tethered systems were limited to profiles up to 1 km above ground level. Of particular interest, is the representativity of the rapid-ascent measurements associated with rawinsonde launches and the longer-term profiling associated with the tethered system in the boundary layer. Comparisons show that profiles differed significantly in both temperature (1 to 2 C) and water vapor (5 to 10%). Both calibration and representativity contribute to these differences.« less
  • OAK-B135 The rate of climate change in polar regions is now felt to be a harbinger of possible global warming. Long-lived, relatively thin stratus clouds play a predominant role in transmitting solar radiation and trapping long wave radiation emitted from open water and melt ponds. In situ measurements of microphysical and radiative properties of Arctic and Antarctic stratus clouds are needed to validate retrievals from remote measurements and simulations using numerical models. While research aircraft can collect comprehensive microphysical and radiative data in clouds, the duration of these aircraft is relatively short (up to about 12 hours). During the coursemore » of the Phase II research, a tethered balloon system was developed that supports miniaturized meteorological, microphysical and radiation sensors that can collect data in stratus clouds for days at a time. The tethered balloon system uses a 43 cubic meter balloon to loft a 17 kg sensor package to altitudes u p to 2 km. Power is supplied to the instrument package via two copper conductors in the custom tether. Meteorological, microphysical and radiation data are recorded by the sensor package. Meteorological measurements include pressure, temperature, humidity, wind speed and wind direction. Radiation measurements are made using a 4-pi radiometer that measures actinic flux at 500 and 800 nm. Position is recorded using a GPS receiver. Microphysical data are obtained using a miniaturized version of an airborne cloud particle imager (CPI). The miniaturized CPI measures the size distribution of water drops and ice crystals from 9 microns to 1.4 mm. Data are recorded onboard the sensor package and also telemetered via a 802.11b wireless communications link. Command signals can also be sent to the computer in the sensor package via the wireless link. In the event of a broken tether, a GMRS radio link to the balloon package is used to heat a wire that burns 15 cm opening in the top of the balloon. The balloon and sensor package slowly descends to the ground and a radio tracking beacon is activated to locate the balloon and sensor package. The tethered balloon system was deployed in upslope clouds at the Smokey Hills Bombing Range in western Kansas and at Ft. Carson Air Force Base near Colorado Springs, Colorado. Both of these areas are FAA Restricted Airspace up to FL180 (18,000 ft MSL) so that the tethered balloon could be flown to its maximum height without violating FAA regulations. Because the feasibility field programs took place at the very end of the research period covered by this DOE grant, a detailed analysis of the results are beyond the scope of this report. However, examples of water drops and ice crystals recorded by the CPI demonstrated the feasibility of the balloon and sensor package. Based on our initial analysis of results from the feasibility field deployments, we have determined that the tethered balloon system is capable of making long -term measurements of meteorological, microphysical and radiation properties of polar stratus clouds up to a height of about 2 km. However, further field trials should be conducted before deploying the system in a full-up field campaign.« less
  • Problems related to the thermal control of high-altitude tethered balloon gondolas are discussed. Various solutions are considered together with their principles. Several types of gondola structures are compared from a thermal point of view. The collection, transport, and storage of solar energy in heating form are described; the energy is used to maintain the on-board equipment in a temperature limit suitable for good operation. (Author) (GRA)
  • The objective of this research project is two-fold. First, to fundamentally understand friction and relaxation dynamics of polymer chains near surfaces; and second, to develop novel self-lubricated substrates suitable for MEMS devices. During the three-year performance period of this study the PI and his students have shown using theory and experiments that systematic introduction of disorder into tethered lubricant coatings (e.g. by using self-assembled monolayer (SAM) mixtures or SAMs with nonlinear, branched architectures) can be used to significantly reduce the friction coefficient of a surface. They have also developed a simple procedure based on dielectric spectroscopy for quantifying the effectmore » of surface disorder on molecular relaxation in lubricant coatings. Details of research accomplishments in each area of the project are described in the body of the report.« less
  • The objective of the work reported was to establish the potential of tethered wind energy systems for energy conversion in the upper atmosphere. Of the concepts investigated, the Vertical Takeoff and Landing (VTOL) lift generation concept had the highest potential as compared to balloon, wind and hybrid concepts.