skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational Fluid Dynamics Simulation Study of Active Power Control in Wind Plants

Abstract

This paper presents an analysis performed on a wind plant's ability to provide active power control services using a high-fidelity computational fluid dynamics-based wind plant simulator. This approach allows examination of the impact on wind turbine wake interactions within a wind plant on performance of the wind plant controller. The paper investigates several control methods for improving performance in waked conditions. One method uses wind plant wake controls, an active field of research in which wind turbine control systems are coordinated to account for their wakes, to improve the overall performance. Results demonstrate the challenge of providing active power control in waked conditions but also the potential methods for improving this performance.

Authors:
; ; ; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
OSTI Identifier:
1320381
Report Number(s):
NREL/CP-5000-66004
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: Presented at the 2016 American Control Conference (ACC), 6-8 July 2016, Boston, Massachusetts
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; wind turbines; wind farms; automatic generation control; computational modeling; rotors; wind speed

Citation Formats

Fleming, Paul, Aho, Jake, Gebraad, Pieter, Pao, Lucy, and Zhang, Yingchen. Computational Fluid Dynamics Simulation Study of Active Power Control in Wind Plants. United States: N. p., 2016. Web. doi:10.1109/ACC.2016.7525115.
Fleming, Paul, Aho, Jake, Gebraad, Pieter, Pao, Lucy, & Zhang, Yingchen. Computational Fluid Dynamics Simulation Study of Active Power Control in Wind Plants. United States. doi:10.1109/ACC.2016.7525115.
Fleming, Paul, Aho, Jake, Gebraad, Pieter, Pao, Lucy, and Zhang, Yingchen. 2016. "Computational Fluid Dynamics Simulation Study of Active Power Control in Wind Plants". United States. doi:10.1109/ACC.2016.7525115.
@article{osti_1320381,
title = {Computational Fluid Dynamics Simulation Study of Active Power Control in Wind Plants},
author = {Fleming, Paul and Aho, Jake and Gebraad, Pieter and Pao, Lucy and Zhang, Yingchen},
abstractNote = {This paper presents an analysis performed on a wind plant's ability to provide active power control services using a high-fidelity computational fluid dynamics-based wind plant simulator. This approach allows examination of the impact on wind turbine wake interactions within a wind plant on performance of the wind plant controller. The paper investigates several control methods for improving performance in waked conditions. One method uses wind plant wake controls, an active field of research in which wind turbine control systems are coordinated to account for their wakes, to improve the overall performance. Results demonstrate the challenge of providing active power control in waked conditions but also the potential methods for improving this performance.},
doi = {10.1109/ACC.2016.7525115},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • With the advent of faster micro-processors, the use of numerical methods to simulate complex fluid dynamic phenomena in three dimensions for use in design has become prevalent in the automotive, and turbo-machinery industries. The Computational Fluid Dynamics (CFD) method divides the region of interest into small control volumes which form the mesh representing the physical characteristics of the problem, and uses the finite volume method to intergrate the equations for the conservation of mass, momentum, energy and species over each control volume. Recent developments in CFD software expedite mesh generation, and enable the use of unstructured grids, comprised of tetrahedralmore » volumes in three dimensions and triangular areas in two. CFD more accurately represents complex geometries and allows for relative movement of meshes enabling simulation of multiple moving bodies. This paper presents two examples of how CFD simulation can be used to assess mine and tunnel ventilation problems formerly addressed by application of analytical solutions which were developed assuming ideal incompressible conditions. CFD simulation is used to evaluate the impact of varying the airflow in a descentionally ventilated airway on the layering along the roof of smoke and hot gases resulting from a vehicle fire. Control of the smoke layer is required to enable safe egress from the vehicle, particularly if the vehicle is for personnel transport, and to ensure control of the fire contaminants throughout the ventilation system. An evaluation of the pressures, generated as a vehicle enters a tunnel portal, using CFD simulation, is also presented for unflared and flared portal configurations. These simulation results are compared with predictions derived using an analytical method which assumes one-dimensional and incompressible flow. Results of the CFD simulation are presented in an animated video format.« less
  • For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire testsmore » and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.« less
  • No abstract prepared.
  • Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is themore » inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.« less
  • In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.