skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rapid Response Sensor for Analyzing Special Nuclear Material.


Abstract not provided.

; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the 23rd Conference on Applications of Accelerators in Research and Industry held May 26-30, 2014 in San Antonio, Texas.
Country of Publication:
United States

Citation Formats

O Doron, A.X.Chen, and A.J.Antolak. Rapid Response Sensor for Analyzing Special Nuclear Material.. United States: N. p., 2014. Web.
O Doron, A.X.Chen, & A.J.Antolak. Rapid Response Sensor for Analyzing Special Nuclear Material.. United States.
O Doron, A.X.Chen, and A.J.Antolak. Fri . "Rapid Response Sensor for Analyzing Special Nuclear Material.". United States. doi:.
title = {Rapid Response Sensor for Analyzing Special Nuclear Material.},
author = {O Doron and A.X.Chen and A.J.Antolak},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Aug 01 00:00:00 EDT 2014},
month = {Fri Aug 01 00:00:00 EDT 2014}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. Thus, the key challenge is isolatingmore » these signature gamma- rays from the prompt fission and ╬▓-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, however this approach should should be applicable for virtually all forms of SNM.« less
  • As one possible means to upgrade licensee safeguards systems, the NRC is exploring a real-time material control concept. The concept incorporates process controls, material containment provisions, and extensive instrumentation. Plants incorporating this concept would be better able to prevent, deter, and detect diversion, and to assure that diversion has not gone undetected. A substantial methods development, evaluation, and preliminary standards development program is under way to develop the basis for future policy decisions. (auth)
  • With the end of the Cold War and the accelerated dismantlement of nuclear weapons, the nuclear material inventory of the United States is growing. In addition, the United States has offered these excess weapons-grade nuclear material assets for international inspections with the intent of encouraging reciprocal action by other nations. In support of this policy, Sandia National Laboratories has initiated a pilot effort (Project Straight-Line) to develop a flexible, site-independent system to continuously and remotely monitor stored nuclear material and integrate the collection, processing, and dissemination of information regarding this material to ensure that declared nuclear materials placed in storagemore » remain in place, unaltered, and stable. As part of this effort, a +3.6V battery powered, modular sensor pack has been developed to monitor total radiation dose, radiation dose rate, and the temperature of each nuclear material container and to provide this information using a standardized sensor interface. This paper will discuss the development of the sensors, the engineering and production of the sensor pack units, and their installation and operation at sites in New Mexico, California, and the Pantex plant in Amarillo.« less
  • The Advanced Retirement and Integrated Extraction System (ARIES) mission the demonstration of advanced technologies for the integrated dismantlement of surplus nuclear weapon components (pits) and the packaging of the recovered plutonium into long-term storage containers. The unclassified plutonium product is suitable for traditional international safeguards, as well as other potential inspection regimes. As indicated in the recent Secretary of Energy`s Record of Decision (ROD), this unclassified excess material is anticipated to be offered for international safeguards under the US Voluntary Offer (INFCIRC/288) performed by the International Atomic Energy Agency (TAEA). The ARIES nondestructive assay (NDA) suite offers state-of-the-art capabilities thatmore » provide highly accurate, precise material assay meeting IAEA bias defect measurement levels. Because of these levels of performance, the requirement of destructive analysis is largely removed. The unique combination of automation and high accuracy suggests the possibility of dual-use operator-owned IAEA authenticated instrumentation. Finally, the concept of continuous unattended monitoring for international safeguards applications with the ARIES NDA suite is intriguing and may encourage additional deployments of similar NDA systems internationally or elsewhere within the DOE complex.« less
  • Nuclear forensics of special nuclear materials is a highly specialized field because there are few analytical laboratories in the world that can safely handle nuclear materials, perform high accuracy and precision analysis using validated analytical methods. The goal of nuclear forensics is to establish an unambiguous link between illicitly trafficked nuclear material and its origin. The Los Alamos National Laboratory Nuclear Materials Signatures Program has implemented a graded 'conduct of operations' type approach for determining the unique nuclear, chemical, and physical signatures needed to identify the manufacturing process, intended use, and origin of interdicted nuclear material. In our approach anmore » analysis flow path was developed for determining key signatures necessary for attributing unknown materials to a source. This analysis flow path included both destructive (i.e., alpha spectrometry, ICP-MS, ICP-AES, TIMS, particle size distribution, density and particle fractionation) and non-destructive (i.e., gamma-ray spectrometry, optical microscopy, SEM, XRD, and x-ray fluorescence) characterization techniques. Analytical techniques and results from three recent cases characterized by this analysis flow path along with an evaluation of the usefulness of this approach will be discussed in this paper.« less