skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modified host cells with efflux pumps

Abstract

The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.

Inventors:
; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1312679
Patent Number(s):
9,428,726
Application Number:
13/115,925
Assignee:
The Regents of the University of California (Oakland, CA) LBNL
DOE Contract Number:
AC02-05CH11231
Resource Type:
Patent
Resource Relation:
Patent File Date: 2011 May 25
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 09 BIOMASS FUELS

Citation Formats

Dunlop, Mary J., Keasling, Jay D., and Mukhopadhyay, Aindrila. Modified host cells with efflux pumps. United States: N. p., 2016. Web.
Dunlop, Mary J., Keasling, Jay D., & Mukhopadhyay, Aindrila. Modified host cells with efflux pumps. United States.
Dunlop, Mary J., Keasling, Jay D., and Mukhopadhyay, Aindrila. 2016. "Modified host cells with efflux pumps". United States. doi:. https://www.osti.gov/servlets/purl/1312679.
@article{osti_1312679,
title = {Modified host cells with efflux pumps},
author = {Dunlop, Mary J. and Keasling, Jay D. and Mukhopadhyay, Aindrila},
abstractNote = {The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Patent:

Save / Share:
  • The invention provides for a method for producing a 5-carbon alcohol in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses a first enzyme capable of catalyzing the dephosphorylation of an isopentenyl pyrophosphate (IPP) or dimethylallyl diphosphate (DMAPP), such as a Bacillus subtilis phosphatase (YhfR), under a suitable condition so that 5-carbon alcohol is 3-methyl-2-buten-1-ol and/or 3-methyl-3-buten-1-ol is produced. Optionally, the host cell may further comprise a second enzyme capable of reducing a 3-methyl-2-buten-1-ol to 3-methyl-butan-1-ol, such as a reductase.
  • The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.
  • The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.
  • The invention related to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural acids at genetically-programmed positions.
  • Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable ofmore » superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.« less