skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni 0.5Co 0.5, Ni 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2

Abstract

It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni 0.5Co 0.5, Ni 0.5Fe 0.5, Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentialsmore » yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.« less

Authors:
 [1];  [1];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Department of Materials Science and Engineering
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center
OSTI Identifier:
1311286
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 18; Journal Issue: 34; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; defect energetics; first-principles calculations; concentrated alloys

Citation Formats

Zhao, Shijun, Stocks, George Malcolm, and Zhang, Yanwen. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2. United States: N. p., 2016. Web. doi:10.1039/C6CP05161H.
Zhao, Shijun, Stocks, George Malcolm, & Zhang, Yanwen. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2. United States. doi:10.1039/C6CP05161H.
Zhao, Shijun, Stocks, George Malcolm, and Zhang, Yanwen. Wed . "Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2". United States. doi:10.1039/C6CP05161H. https://www.osti.gov/servlets/purl/1311286.
@article{osti_1311286,
title = {Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2},
author = {Zhao, Shijun and Stocks, George Malcolm and Zhang, Yanwen},
abstractNote = {It has been shown that concentrated solid solution alloys possess unusual electronic, magnetic, transport, mechanical and radiation-resistant properties that are directly related to underlying chemical complexity. Because every atom experiences a different local atomic environment, the formation and migration energies of vacancies and interstitials in these alloys exhibit a distribution, rather than a single value as in a pure metal or dilute alloy. In this study, using ab initio calculations based on density functional theory and special quasirandom structure, we have characterized the distribution of defect formation energy and migration barrier in four Ni-based solid-solution alloys: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2. As defect formation energies in finite-size models depend sensitively on the elemental chemical potential, we have developed a computationally efficient method for determining it which takes into account the global composition and the local short-range order. In addition we have compared the results of our ab initio calculations to those obtained from available embedded atom method (EAM) potentials. Our results indicate that the defect formation and migration energies are closely related to the specific atomic size in the structure, which further determines the elemental diffusion properties. In conclusion, different EAM potentials yield different features of defect energetics in concentrated alloys, pointing to the need for additional potential development efforts in order to allow spatial and temporal scale-up of defect and simulations, beyond those accessible to ab initio methods.},
doi = {10.1039/C6CP05161H},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 34,
volume = 18,
place = {United States},
year = {Wed Aug 03 00:00:00 EDT 2016},
month = {Wed Aug 03 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12works
Citation information provided by
Web of Science

Save / Share:
  • The distribution of migration energies of vacancies and interstitials in Ni 0.5Fe 0.5has a region of overlap, an indication of their comparable mobility compared to pure Ni (indicated by dotted line), which will greatly facilitate the recombination of Frenkel pairs.
  • Core–shell materials have attracted a great deal of interest since core–shell particles have superior physical and chemical properties compared to their single-component counterparts. The cathode material Li(Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}){sub 0.8}(Ni{sub 0.5}Mn{sub 0.5}){sub 0.2}O{sub 2} (LNCANMO) with a core–shell structure was synthesized via a co-precipitation method and investigated as the cathode material for lithium ion batteries. The core–shell particle consisted of LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} (LNCAO) as the core and LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} as the shell. The cycling behavior between 2.8 and 4.3 V at a current of 0.1 C-rate showed a reversible capacity of ∼195 mAh g{supmore » −1} with little capacity loss after 50 cycles. Extensive assessment of the electronic structures of the LNCAO and LNCANMO cathode materials was carried out using X-ray absorption spectroscopy (XAS). XAS has been used for structure refinement on the transition metal ion of the cathode. In particular, XAS studies of electrochemical reactions have been done from the viewpoint of the transition metal ion. In this study, Ni K-edge XAS spectra of the charge and discharge processes of LNCAO and LNCANMO were investigated.« less
  • Ba 0.5Sr 0.5Co 0.8 0.2O (3-δ)(BSCF) is a potential oxygen separation membrane material for advanced coal based power plants. For this application, BSCF must be joined to a metal. In the current study, Ag-CuO, a reactive air brazing (RAB) alloy was evaluated for brazing BSCF. In-situ contact angle tests were performed on BSCF using Ag-CuO binary mixtures at 950 and 1000°C and the interfacial microstructures were evaluated. Wetting contact angles (θ< 90°) were obtained at short times at 950°C and the contact angles remained constant at 1000°C for 1, 2 and 8 mol% CuO contents. Microstructural analysis revealed the dissolutionmore » of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundary. The formation of a thick interfacial reaction product layer and ridging at the sessile drop triple point indicate that the reaction kinetics are very rapid and that it will require careful process control to obtain the desired thin but continuous interfacial product layer.« less
  • In the present attempt,novel perovskite oxide Dy{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3–δ} (DSCF) as cathode material has been synthesized by an Ethylene glycol-citrate combined sol-gel combustion route. Orthorhombic symmetry structure is confirmed by X-ray diffraction (XRD) and data is well fitted using Rietveld refinement by Full-Prof software suite. Chemical natureof surface of DSCF has been analyzed by using X-ray photoelectron spectroscopy (XPS). XPS result shows that Dy ions are in +3 oxidation state and Sr in +2 states. However Co2p and Fe2p spectra indicates partial change in oxidation state from Co3+/Fe3+ to Co4+/Fe4+. These attribute to develop active sites onmore » the surface for oxygen ions. O1s XPS spectra shows two oxygen peaks relatedto lattice oxygen in perovskite and absorbed oxygen in oxygen vacancy are detected. O1s spectra demonstrate the existence of adsorbed oxygen species on the surface of DSCF oxide which is quite beneficial for intermediate temperature of Solid Oxide Fuel Cell.« less
  • Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} was successfully prepared using modified solid-state synthesis routes. The lowest temperature to obtained single phase of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is about 900°C for 15 hours. Longer period of time are required compared to only 5 hours at 950°C as established in literatures. The X-ray Diffraction (XRD) data confirmed that Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is formed a cubic perovskite with the space group of Pm-3m. The lattice parameters of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} are a = 3.990 (1) Å and unit cell volume is V = 63.5 (1)more » Å{sup 3}. The Rietveld refinement of XRD data revealed that the crystal structure of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} slightly changes as a function of temperature.« less