skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ab initio prediction of fast non-equilibrium transport of nascent polarons in SrI 2: a key to high-performance scintillation [First-principles study of hole polaron formation and migration in strontium iodide]

Abstract

The excellent light yield proportionality of europium-doped strontium iodide (SrI 2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI 2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale for the unexpected high-energy resolution of SrI 2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for nonlinear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape formore » polaron migration in SrI 2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.« less

Authors:
 [1];  [1];  [1];  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Science Directorate
  2. Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Applied Physics
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1305858
Report Number(s):
LLNL-JRNL-678128
Journal ID: ISSN 2057-3960
Grant/Contract Number:
AC52-07NA27344
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
npj Computational Materials
Additional Journal Information:
Journal Volume: 2; Journal ID: ISSN 2057-3960
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Zhou, Fei, Sadigh, Babak, Aberg, Daniel, and Erhart, Paul. Ab initio prediction of fast non-equilibrium transport of nascent polarons in SrI2: a key to high-performance scintillation [First-principles study of hole polaron formation and migration in strontium iodide]. United States: N. p., 2016. Web. doi:10.1038/npjcompumats.2016.22.
Zhou, Fei, Sadigh, Babak, Aberg, Daniel, & Erhart, Paul. Ab initio prediction of fast non-equilibrium transport of nascent polarons in SrI2: a key to high-performance scintillation [First-principles study of hole polaron formation and migration in strontium iodide]. United States. doi:10.1038/npjcompumats.2016.22.
Zhou, Fei, Sadigh, Babak, Aberg, Daniel, and Erhart, Paul. 2016. "Ab initio prediction of fast non-equilibrium transport of nascent polarons in SrI2: a key to high-performance scintillation [First-principles study of hole polaron formation and migration in strontium iodide]". United States. doi:10.1038/npjcompumats.2016.22. https://www.osti.gov/servlets/purl/1305858.
@article{osti_1305858,
title = {Ab initio prediction of fast non-equilibrium transport of nascent polarons in SrI2: a key to high-performance scintillation [First-principles study of hole polaron formation and migration in strontium iodide]},
author = {Zhou, Fei and Sadigh, Babak and Aberg, Daniel and Erhart, Paul},
abstractNote = {The excellent light yield proportionality of europium-doped strontium iodide (SrI2:Eu) has resulted in state-of-the-art γ-ray detectors with remarkably high-energy resolution, far exceeding that of most halide compounds. In this class of materials, the formation of self-trapped hole polarons is very common. However, polaron formation is usually expected to limit carrier mobilities and has been associated with poor scintillator light-yield proportionality and resolution. Here using a recently developed first-principles method, we perform an unprecedented study of polaron transport in SrI2, both for equilibrium polarons, as well as nascent polarons immediately following a self-trapping event. We propose a rationale for the unexpected high-energy resolution of SrI2. We identify nine stable hole polaron configurations, which consist of dimerised iodine pairs with polaron-binding energies of up to 0.5 eV. They are connected by a complex potential energy landscape that comprises 66 unique nearest-neighbour migration paths. Ab initio molecular dynamics simulations reveal that a large fraction of polarons is born into configurations that migrate practically barrier free at room temperature. Consequently, carriers created during γ-irradiation can quickly diffuse away reducing the chance for nonlinear recombination, the primary culprit for non-proportionality and resolution reduction. We conclude that the flat, albeit complex, landscape for polaron migration in SrI2 is a key for understanding its outstanding performance. This insight provides important guidance not only for the future development of high-performance scintillators but also of other materials, for which large polaron mobilities are crucial such as batteries and solid-state ionic conductors.},
doi = {10.1038/npjcompumats.2016.22},
journal = {npj Computational Materials},
number = ,
volume = 2,
place = {United States},
year = 2016,
month = 8
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • The insulating nature of sulfur and the solubility of the polysulfide in organic electrolyte are two main factors that limit the application of lithium sulfur (Li-S) battery systems. Enhancement of Li conductivity, identification of a strong adsorption agent of polysulfides and the improvement of the whole sulfur-based electrode are of great technological importance. The diffusion of Li atoms on the outer-wall, inner-wall and inter-wall spaces in nitrogen-doped double-walled carbon nanotubes (CNTs) and penetrations of Li and S atoms through the walls are studied using density functional theory. We find that N-doping does not alternate the diffusion behaviors of Li atomsmore » throughout the CNTs, but the energy barrier for Li atoms to penetrate the wall is greatly decreased by N-doping (from ~9.0 eV to ~ 1.0 eV). On the other hand, the energy barrier for S atoms to penetrate the wall remains very high, which is caused by the formation of the chemical bonds between the S and nearby N atoms. The results indicate that Li atoms are able to diffuse freely, whereas S atoms can be encapsulated inside the N-doped CNTs, suggesting that the N-doped CNTs can be potentially used in high performance Li-S batteries.« less
  • In the present work, we report the detailed electronic band structure calculations on thorium monocarbide. The comparison of enthalpies, derived for various phases using evolutionary structure search method in conjunction with first principles total energy calculations at several hydrostatic compressions, yielded a high pressure structural sequence of NaCl type (B1) → Pnma → Cmcm → CsCl type (B2) at hydrostatic pressures of ∼19 GPa, 36 GPa, and 200 GPa, respectively. However, the two high pressure experimental studies by Gerward et al. [J. Appl. Crystallogr. 19, 308 (1986); J. Less-Common Met. 161, L11 (1990)] one up to 36 GPa and other up to 50 GPa, onmore » substoichiometric thorium carbide samples with carbon deficiency of ∼20%, do not report any structural transition. The discrepancy between theory and experiment could be due to the non-stoichiometry of thorium carbide samples used in the experiment. Further, in order to substantiate the results of our static lattice calculations, we have determined the phonon dispersion relations for these structures from lattice dynamic calculations. The theoretically calculated phonon spectrum reveal that the B1 phase fails dynamically at ∼33.8 GPa whereas the Pnma phase appears as dynamically stable structure around the B1 to Pnma transition pressure. Similarly, the Cmcm structure also displays dynamic stability in the regime of its structural stability. The B2 phase becomes dynamically stable much below the Cmcm to B2 transition pressure. Additionally, we have derived various thermophysical properties such as zero pressure equilibrium volume, bulk modulus, its pressure derivative, Debye temperature, thermal expansion coefficient and Gruneisen parameter at 300 K and compared these with available experimental data. Further, the behavior of zero pressure bulk modulus, heat capacity and Helmholtz free energy has been examined as a function temperature and compared with the experimental data of Danan [J. Nucl. Mater. 57, 280 (1975)].« less