skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning

Abstract

RENiO 3 (RE=rare-earth element) and V 2O 3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO 3) or pressure (V 2O 3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO 3 and V 2O 3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.

Authors:
;  [1];  [1];  [2];  [2];  [2];  [3];  [3];  [3];  [3];  [4];  [5];  [5];  [5];  [6];  [6];  [6];  [7];  [7];  [8] more »;  [9];  [9];  [10];  [10];  [11];  [12];  [9];  [1] « less
  1. Columbia Univ., New York, NY (United States)
  2. Paul Scherrer Inst. (PSI), Villigen (Switzerland)
  3. McMaster Univ., Hamilton, ON (Canada)
  4. McMaster Univ., Hamilton, ON (Canada); Canadian Inst. for Advanced Research, Toronto (Canada)
  5. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Physics
  6. Zhejiang Univ., Hangzhou (China)
  7. Japan Atomic Energy Agency (JAEA), Tokai (Japan). Advanced Science Research Center
  8. Brookhaven National Lab. (BNL), Upton, NY (United States)
  9. Univ. of Tokyo (Japan)
  10. Kyoto Univ. (Japan)
  11. Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Ciencia de Materiales de Madrid, Cantoblanco
  12. Brookhaven National Lab. (BNL), Upton, NY (United States); Rutgers Univ., Piscataway, NJ (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1303008
Report Number(s):
BNL-112476-2016-JA
Journal ID: ISSN 2041-1723; R&D Project: PO011; KC0201060
Grant/Contract Number:  
SC00112704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

B. A. Frandsen, Liu, L., Cheung, S. C., Guguchia, Z., Khasanov, R., Morenzoni, E., Munsie, T. J.S., Hallas, A. M., Wilson, M. N., Cai, Y., Luke, G. M., Chen, B., Li, W., Jin, C., Ding, C, Guo, S., Ning, F., Ito, T. U., Higemoto, W., Billinge, S. J.L., Sakamoto, S., Fujimori, A., Murakami, T., Kageyama, H., Alonso, J. A., Kotliar, G., Imada, M., and Uemura, Y. J. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning. United States: N. p., 2016. Web. doi:10.1038/ncomms12519.
B. A. Frandsen, Liu, L., Cheung, S. C., Guguchia, Z., Khasanov, R., Morenzoni, E., Munsie, T. J.S., Hallas, A. M., Wilson, M. N., Cai, Y., Luke, G. M., Chen, B., Li, W., Jin, C., Ding, C, Guo, S., Ning, F., Ito, T. U., Higemoto, W., Billinge, S. J.L., Sakamoto, S., Fujimori, A., Murakami, T., Kageyama, H., Alonso, J. A., Kotliar, G., Imada, M., & Uemura, Y. J. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning. United States. doi:10.1038/ncomms12519.
B. A. Frandsen, Liu, L., Cheung, S. C., Guguchia, Z., Khasanov, R., Morenzoni, E., Munsie, T. J.S., Hallas, A. M., Wilson, M. N., Cai, Y., Luke, G. M., Chen, B., Li, W., Jin, C., Ding, C, Guo, S., Ning, F., Ito, T. U., Higemoto, W., Billinge, S. J.L., Sakamoto, S., Fujimori, A., Murakami, T., Kageyama, H., Alonso, J. A., Kotliar, G., Imada, M., and Uemura, Y. J. Wed . "Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning". United States. doi:10.1038/ncomms12519. https://www.osti.gov/servlets/purl/1303008.
@article{osti_1303008,
title = {Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning},
author = {B. A. Frandsen and Liu, L. and Cheung, S. C. and Guguchia, Z. and Khasanov, R. and Morenzoni, E. and Munsie, T. J.S. and Hallas, A. M. and Wilson, M. N. and Cai, Y. and Luke, G. M. and Chen, B. and Li, W. and Jin, C. and Ding, C and Guo, S. and Ning, F. and Ito, T. U. and Higemoto, W. and Billinge, S. J.L. and Sakamoto, S. and Fujimori, A. and Murakami, T. and Kageyama, H. and Alonso, J. A. and Kotliar, G. and Imada, M. and Uemura, Y. J.},
abstractNote = {RENiO3 (RE=rare-earth element) and V2O3 are archetypal Mott insulator systems. When tuned by chemical substitution (RENiO3) or pressure (V2O3), they exhibit a quantum phase transition (QPT) between an antiferromagnetic Mott insulating state and a paramagnetic metallic state. Because novel physics often appears near a Mott QPT, the details of this transition, such as whether it is first or second order, are important. Here, we demonstrate through muon spin relaxation/rotation (μSR) experiments that the QPT in RENiO3 and V2O3 is first order: the magnetically ordered volume fraction decreases to zero at the QPT, resulting in a broad region of intrinsic phase separation, while the ordered magnetic moment retains its full value until it is suddenly destroyed at the QPT. These findings bring to light a surprising universality of the pressure-driven Mott transition, revealing the importance of phase separation and calling for further investigation into the nature of quantum fluctuations underlying the transition.},
doi = {10.1038/ncomms12519},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = {Wed Aug 17 00:00:00 EDT 2016},
month = {Wed Aug 17 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Metal-insulator transitions
journal, October 1998

  • Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori
  • Reviews of Modern Physics, Vol. 70, Issue 4, p. 1039-1263
  • DOI: 10.1103/RevModPhys.70.1039

A profile refinement method for nuclear and magnetic structures
journal, June 1969