skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale

Abstract

In this project, we are developing a new system for measuring forces within and between nanoscale biological molecules based on mesoscopic springs made of cholesterol helical ribbons. These ribbons self-assemble in a wide variety of complex fluids containing sterol, a mixture of surfactants and water [1] and have spring constants in the range from 0.5 to 500 pN/nm [2-4]. By the end of this project, we have demonstrated that the cholesterol helical ribbons can be used for measuring forces between biological objects and for mapping the strain fields in hydrogels.

Authors:
 [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Chicago Operations Office (CO)
OSTI Identifier:
1299203
DOE Contract Number:
FG02-04ER46149
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Benedek, George, and Casparay, Alfred H. Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale. United States: N. p., 2016. Web. doi:10.2172/1299203.
Benedek, George, & Casparay, Alfred H. Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale. United States. doi:10.2172/1299203.
Benedek, George, and Casparay, Alfred H. Fri . "Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale". United States. doi:10.2172/1299203. https://www.osti.gov/servlets/purl/1299203.
@article{osti_1299203,
title = {Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale},
author = {Benedek, George and Casparay, Alfred H.},
abstractNote = {In this project, we are developing a new system for measuring forces within and between nanoscale biological molecules based on mesoscopic springs made of cholesterol helical ribbons. These ribbons self-assemble in a wide variety of complex fluids containing sterol, a mixture of surfactants and water [1] and have spring constants in the range from 0.5 to 500 pN/nm [2-4]. By the end of this project, we have demonstrated that the cholesterol helical ribbons can be used for measuring forces between biological objects and for mapping the strain fields in hydrogels.},
doi = {10.2172/1299203},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Aug 19 00:00:00 EDT 2016},
month = {Fri Aug 19 00:00:00 EDT 2016}
}

Technical Report:

Save / Share:
  • This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Our objective is to develop the devices, interconnection technologies, and self-assembling systems required for quantum-based information processing that permit ultra-dense integrated circuits and that allow continuation of the on-going silicon VLSI miniaturization process. That process is facing increasing difficulties related to switch performance, heat dissipation, interconnect failure, quantum effect complications, and rapidly escalating manufacturing costs. Our approach is intended to address these concerns and consists of the development of highly parallel stochastic computers utilizing quantum components and self-assembly methods;more » the development of self-assembling monolayers for use as resists and memory devices; and research on approaches to molecular self-assembly of the precursors to molecular transistors. The work will provide confirmation of principles, is intended to provide near-term results of potential relevance to the commercial sector, and has a range of applications that include high performance computing, biotechnology, and nanoscale chemistry.« less
  • The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscalemore » in photothermal induced resonance experiments. The intrinsic η of metal–organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. In conclusion, our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.« less
  • The synthesis is proposed of water-soluble vinyl and other polymers capable of self-assembly through hydrophobic bonding of pendent fluorocarbon and other hydrophobic groups. The self-assembly process will be studied by viscometry and dynamic viscoelasticity, and by static and dynamic light scattering. These investigations are aimed at identifying the structural features of polymers that are important in enhancing the viscosity of aqueous polymer solutions at very low polymer concentrations (< 1,000 ppm). The authors also initiate small angle neutron scattering (SANS) measurements aimed at the determination of the size of the fluorocarbon-containing hydrophobic aggregates. They will be interested in the degreemore » of self assembly as a function of the type and length of the hydrophobic groups and of the type and length of the flexible spacer group linking the hydrophobic to the polymer backbone. The nature of the hydrophilic chain will also be of interest. Thus, they investigate a number of hydrophilic comonomers such as acrylamide, N-vinylpyrrolidone and anionic or cationic vinyl monomers. Surface interactions of these interesting copolymers will be studied by adsorption onto appropriate modified latex spheres. Finally, they propose to explore the synthesis of water-soluble polymers capable of self assembly through interactions of pendent polyanions and polycations.« less
  • This report addresses the interdisciplinary emerging field of self-assembling biomolecular materials--its status, the opportunities that face it, and the research and infrastructure developments that are needed to ensure that it achieves its potential. This field is an exciting new area at the frontiers of materials science. It is based on the premise that nature has already done the critical experiments, and it is up to us to better understand them and learn how to profit from them. The focus of this report is the study and generalization of biomolecular self-assembly, as directed toward the development of new or advanced materialsmore » of technical importance. The underlying theme is the belief that there are important lessons to be learned from understanding, and perhaps mimicking, biological materials and the ways in which they self-assemble. This report conveys the relationship between materials complexity, materials self-assembly, and lessons learned from biology; it underscores the need to encourage a partnership between physical scientists, engineers, and biologists and medical researchers.« less
  • We are developing an important aspect of a new technology based on self-reproducing machine systems. Such systems could overcome resource limitations and control the deleterious side effects of human activities on the environment. Machine systems capable of building themselves promise an increase in industrial productivity as dramatic as that of the industrial revolution. To operate successfully, such systems must procure necessary raw materials from their surroundings. Therefore, next to automation, most critical for this new technology is the ability to extract important chemicals from readily available soils. In contrast to conventional metallurgical practice, these extraction processes cannot make substantial usemore » of rare elements. We have designed a thermodynamically viable process and experimentally demonstrated most steps that differ from common practice. To this end we had to develop a small, disposable vacuum furnace system. Our work points to a viable extraction process.« less