skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Institutes of Health (NIH)
OSTI Identifier:
1298286
Resource Type:
Journal Article
Resource Relation:
Journal Name: Scientific Reports; Journal Volume: 6; Journal Issue: 2016
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Mandal, Tirtha, Shin, Seungjin, Aluvila, Sreevidya, Chen, Hui-Chen, Grieve, Carter, Choe, Jun-Yong, Cheng, Emily H., Hustedt, Eric J., and Oh, Kyoung Joon. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore. United States: N. p., 2016. Web. doi:10.1038/srep30763.
Mandal, Tirtha, Shin, Seungjin, Aluvila, Sreevidya, Chen, Hui-Chen, Grieve, Carter, Choe, Jun-Yong, Cheng, Emily H., Hustedt, Eric J., & Oh, Kyoung Joon. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore. United States. doi:10.1038/srep30763.
Mandal, Tirtha, Shin, Seungjin, Aluvila, Sreevidya, Chen, Hui-Chen, Grieve, Carter, Choe, Jun-Yong, Cheng, Emily H., Hustedt, Eric J., and Oh, Kyoung Joon. Thu . "Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore". United States. doi:10.1038/srep30763.
@article{osti_1298286,
title = {Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore},
author = {Mandal, Tirtha and Shin, Seungjin and Aluvila, Sreevidya and Chen, Hui-Chen and Grieve, Carter and Choe, Jun-Yong and Cheng, Emily H. and Hustedt, Eric J. and Oh, Kyoung Joon},
abstractNote = {},
doi = {10.1038/srep30763},
journal = {Scientific Reports},
number = 2016,
volume = 6,
place = {United States},
year = {Thu Aug 04 00:00:00 EDT 2016},
month = {Thu Aug 04 00:00:00 EDT 2016}
}
  • Interactions of Bcl-2 family proteins play a regulatory role in mitochondrial apoptosis. The pro-apoptotic protein Bak resides in the outer mitochondrial membrane, and the formation of Bak homo- or heterodimers is involved in the regulation of apoptosis. The previously reported structure of the human Bak protein (residues Glu16-Gly186) revealed that a zinc ion was coordinated with two pairs of Asp160 and His164 residues from the symmetry-related molecules. This zinc-dependent homodimer was regarded as an anti-apoptotic dimer. In the present study, we determined the crystal structure of the human Bak residues Ser23-Asn185 at 2.5 {angstrom}, and found a distinct type ofmore » homodimerization through Cys166 disulfide bridging between the symmetry-related molecules. In the two modes of homodimerization, the molecular interfaces are completely different. In the membrane-targeted model of the S-S bridged dimer, the BH3 motifs are too close to the membrane to interact directly with the anti-apoptotic relatives, such as Bcl-x{sub L}. Therefore, the Bak dimer structure reported here may represent a pro-apoptotic mode under oxidized conditions.« less
  • No abstract prepared.
  • Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 {mu}M)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability.more » Polyubiquitination of Bcl-xL was detected after incubation with 100 {mu}M clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 {mu}M) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway.« less
  • The production of man-made nanoparticles for various modern applications has increased exponentially in recent years, but the potential health effects of most nanoparticles are not well characterized. Unfortunately, in vitro nanoparticle toxicity studies are extremely limited by yet unresolved problems relating to dosimetry. In the present study, we systematically characterized manganese (Mn) nanoparticle sizes and examined the nanoparticle-induced oxidative signaling in dopaminergic neuronal cells. Differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) studies revealed that Mn nanoparticles range in size from single nanoparticles ({approx} 25 nM) to larger agglomerates when in treatment media. Manganese nanoparticles were effectively internalizedmore » in N27 dopaminergic neuronal cells, and they induced a time-dependent upregulation of the transporter protein transferrin. Exposure to 25-400 {mu}g/mL Mn nanoparticles induced cell death in a time- and dose-dependent manner. Mn nanoparticles also significantly increased ROS, accompanied by a caspase-mediated proteolytic cleavage of proapoptotic protein kinase C{delta} (PKC{delta}), as well as activation loop phosphorylation. Blocking Mn nanoparticle-induced ROS failed to protect against the neurotoxic effects, suggesting the involvement of other pathways. Further mechanistic studies revealed changes in Beclin 1 and LC3, indicating that Mn nanoparticles induce autophagy. Primary mesencephalic neuron exposure to Mn nanoparticles induced loss of TH positive dopaminergic neurons and neuronal processes. Collectively, our results suggest that Mn nanoparticles effectively enter dopaminergic neuronal cells and exert neurotoxic effects by activating an apoptotic signaling pathway and autophagy, emphasizing the need for assessing possible health risks associated with an increased use of Mn nanoparticles in modern applications. -- Highlights: Black-Right-Pointing-Pointer Mn nanoparticles activate mitochondrial cell death signaling in dopaminergic neuron. Black-Right-Pointing-Pointer Mn nanoparticles activate caspase-mediated proteolytic cleavage of PKC{delta} cascade. Black-Right-Pointing-Pointer Mn nanoparticles induce autophagy in dopaminergic neuronal cells. Black-Right-Pointing-Pointer Mn nanoparticles induce loss of TH{sup +} neurons in primary mesencephalic cultures. Black-Right-Pointing-Pointer Study emphasizes neurotoxic risks of Mn nanoparticles to nigral dopaminergic system.« less
  • Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potentialmore » and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant potential or both.« less