skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
FOREIGN
OSTI Identifier:
1298278
Resource Type:
Journal Article
Resource Relation:
Journal Name: Scientific Reports; Journal Volume: 6; Journal Issue: 2016
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Carcelli, Mauro, Rogolino, Dominga, Gatti, Anna, De Luca, Laura, Sechi, Mario, Kumar, Gyanendra, White, Stephen W., Stevaert, Annelies, and Naesens, Lieve. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. United States: N. p., 2016. Web. doi:10.1038/srep31500.
Carcelli, Mauro, Rogolino, Dominga, Gatti, Anna, De Luca, Laura, Sechi, Mario, Kumar, Gyanendra, White, Stephen W., Stevaert, Annelies, & Naesens, Lieve. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. United States. doi:10.1038/srep31500.
Carcelli, Mauro, Rogolino, Dominga, Gatti, Anna, De Luca, Laura, Sechi, Mario, Kumar, Gyanendra, White, Stephen W., Stevaert, Annelies, and Naesens, Lieve. Thu . "N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes". United States. doi:10.1038/srep31500.
@article{osti_1298278,
title = {N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes},
author = {Carcelli, Mauro and Rogolino, Dominga and Gatti, Anna and De Luca, Laura and Sechi, Mario and Kumar, Gyanendra and White, Stephen W. and Stevaert, Annelies and Naesens, Lieve},
abstractNote = {},
doi = {10.1038/srep31500},
journal = {Scientific Reports},
number = 2016,
volume = 6,
place = {United States},
year = {Thu Aug 11 00:00:00 EDT 2016},
month = {Thu Aug 11 00:00:00 EDT 2016}
}
  • ABSTRACT The clinical severity and annual occurrence of influenza virus epidemics, combined with the availability of just a single class of antivirals to treat infections, underscores the urgent need to develop new anti-influenza drugs. The endonuclease activity within the viral acidic polymerase (PA) protein is an attractive target for drug discovery due to the critical role it plays in viral gene transcription. RO-7 is a next-generation PA endonuclease inhibitor of influenza A and B viruses, but its drug resistance potential is unknown. Through serial passage of influenza A(H1N1) viruses in MDCK cells under selective pressure of RO-7, we identified anmore » I38T substitution within the PA endonuclease domain that conferred in vitro resistance to RO-7 (up to a 287-fold change in 50% effective concentration [EC 50 ]). I38T emerged between 5 and 10 passages, and when introduced into recombinant influenza A(H1N1) viruses, alone conferred RO-7 resistance (up to an 81-fold change in EC 50 ). Cocrystal structures of mutant and wild-type endonuclease domains with RO-7 provided the structural basis of resistance, where a key hydrophobic interaction between RO-7 and the Ile38 side chain is compromised when mutated to the polar threonine. While Ile38 does not have a crucial role in coordinating the endonuclease active site, the switch to threonine does affect the polymerase activity of some viruses and influences RO-7 affinity for the PA N target (i.e., the ≈200-residue N-terminal domain of PA). However, the change does not lead to a complete loss of replication activity in vitro . Our results predict that RO-7-resistant influenza viruses carrying the I38T substitution may emerge under treatment. This should be taken into consideration for clinical surveillance and in refinement of these drugs. IMPORTANCE The effectiveness of antiviral drugs can be severely compromised by the emergence of resistant viruses. Therefore, determination of the mechanisms by which viruses become resistant is critical for drug development and clinical use. RO-7 is a compound that potently inhibits influenza virus replication and belongs to a new class of drugs in late-stage clinical trials for treatment of influenza virus infection. Here we demonstrate that a single amino acid change acquired under prolonged virus exposure to RO-7 renders influenza viruses significantly less susceptible to its inhibitory effects. We have discovered how the mutation can simultaneously interfere with drug activity and still maintain efficient virus replication. These findings have important implications for the development of more effective derivatives of RO-7-like drugs and provide guidance for how to monitor the emergence of resistance.« less
  • The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenzamore » H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.« less
  • The Vpu protein of human immunodeficiency virus type 1 has been shown to shunt the CD4 receptor molecule to the proteasome for degradation and to enhance virus release from infected cells. The exact mechanism by which the Vpu protein enhances virus release is currently unknown but some investigators have shown that this function is associated with the transmembrane domain and potential ion channel properties. In this study, we determined if the transmembrane domain of Vpu could be functionally substituted with that of the prototypical viroporin, the M2 protein of influenza A virus. We constructed chimeric vpu gene in which themore » transmembrane domain of Vpu was replaced with that of the M2 protein of influenza. This chimeric vpu gene was substituted for the vpu gene in the genome of a pathogenic simian human immunodeficiency virus, SHIV{sub KU-1bMC33}. The resulting virus, SHIV{sub M2}, synthesized a Vpu protein that had a slightly different M{sub r} compared to the parental SHIV{sub KU-1bMC33}, reflecting the different sizes of the two Vpu proteins. The SHIV{sub M2} was shown to replicate with slightly reduced kinetics when compared to the parental SHIV{sub KU-1bMC33} but electron microscopy revealed that the site of maturation was similar to the parental virus SHIV{sub KU1bMC33}. We show that the replication and spread of SHIV{sub M2} could be blocked with the antiviral drug rimantadine, which is known to target the M2 ion channel. Our results indicate a dose dependent inhibition of SHIV{sub M2} with 100 {mu}M rimantadine resulting in a >95% decrease in p27 released into the culture medium. Rimantadine did not affect the replication of the parental SHIV{sub KU-1bMC33}. Examination of SHIV{sub M2}-infected cells treated with 50 {mu}M rimantadine revealed numerous viral particles associated with the cell plasma membrane and within intracytoplasmic vesicles, which is similar to HIV-1 mutants lacking a functional vpu. To determine if SHIV{sub M2} was as pathogenic as the parental SHIV{sub KU-1bMC33} virus, two pig-tailed macaques were inoculated and followed for up to 8 months. Both pig-tailed macaques developed severe CD4{sup +} T cell loss within 1 month of inoculation, high viral loads, and histological lesions consistent with lymphoid depletion similar to the parental SHIV{sub KU-1bMC33}. Taken together, these results indicate for the first time that the TM domain of the Vpu protein can be functionally substituted with the TM of M2 of influenza A virus, and shows that compounds that target the TM domain of Vpu protein of HIV-1 could serve as novel anti-HIV-1 drugs.« less
  • The influenza A virus polymerase consists of three subunits (PA, PB1, and PB2) necessary for viral RNA synthesis. The heterotrimeric polymerase complex forms through PA interacting with PB1 and PB1 interacting with PB2. PA has been shown to play critical roles in the assembly, catalysis, and nuclear localization of the polymerase. To probe the structure of PA, we isolated recombinant PA from insect cells. Limited proteolysis revealed that PA contained two domains connected by a 20-residue linker (residues 257-276). Far-UV circular dichroism established that the two domains folded into a mixed {alpha}/{beta} structure when separately expressed. In vitro pull-down assaysmore » showed that neither individually nor cooperatively expressed PA domains, without the linker, could assure PA-PB1 interaction. Protease treatment of PA-PB1 complex indicated that its PA subunit was significantly more stable than free PA, suggesting that the linker is protected and it constitutes an essential component of the PA-PB1 interface.« less