skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report

Abstract

Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.

Authors:
 [1];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1293807
Report Number(s):
NREL/MP-5400-65054
DOE Contract Number:
AC36-08GO28308
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
33 ADVANCED PROPULSION SYSTEMS; computational fluid dynamics; CFD; automotive HVAC system; EV; split flow HVAC system

Citation Formats

Leighton, Daniel, and Rugh, John. Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report. United States: N. p., 2016. Web. doi:10.2172/1293807.
Leighton, Daniel, & Rugh, John. Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report. United States. doi:10.2172/1293807.
Leighton, Daniel, and Rugh, John. 2016. "Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report". United States. doi:10.2172/1293807. https://www.osti.gov/servlets/purl/1293807.
@article{osti_1293807,
title = {Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report},
author = {Leighton, Daniel and Rugh, John},
abstractNote = {Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.},
doi = {10.2172/1293807},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Technical Report:

Save / Share:
  • In September of 1989 work began on the DOE University Program grant DE-FG07-89ER12889. The grant provides support for a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Second Annual Technical Progress report covers the period from September 1990 to September 1991. It summarizes the second year accomplishments while the appendices provide detailed information presented at conference meetings. These are two primary goals of this research. The first is to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz, a project consultant duringmore » the first year of the project. This philosophy, as presented in the first annual technical progress report, is to improve public perception of the safety of nuclear power plants by incorporating a high degree automation where greatly simplified operator control console minimizes the possibility of human error in power plant operations. A hierarchically distributed control system with automated responses to plant upset conditions is the focus of our research to achieve this goal. The second goal is to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-II steam plant.« less
  • This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 steam plant. Described in this Final (Third Annual) Technical Progress Report is the accomplishment of the project`s final milestone, an in-plant intelligent control experiment conductedmore » on April 1, 1993. The development of the experiment included: simulation validation, experiment formulation and final programming, procedure development and approval, and experimental results. Other third year developments summarized in this report are: (1) a theoretical foundation for Reconfigurable Hybrid Supervisory Control, (2) a steam plant diagnostic system, (3) control console design tools and (4) other advanced and intelligent control.« less
  • This project was initiated in September 1989 as a three year project to develop and demonstrate Intelligent Distributed Control (IDC) for Nuclear Power Plants. The body of this Third Annual Technical Progress report summarizes the period from September 1991 to October 1992. There were two primary goals of this research project. The first goal was to combine diagnostics and control to achieve a highly automated power plant as described by M.A. Schultz. His philosophy, is to improve public perception of the safety of nuclear power plants by incorporating a high degree of automation where a greatly simplified operator control consolemore » minimizes the possibility of human error in power plant operations. To achieve this goal, a hierarchically distributed control system with automated responses to plant upset conditions was pursued in this research. The second goal was to apply this research to develop a prototype demonstration on an actual power plant system, the EBR-2 stem plant. Emphasized in this Third Annual Technical Progress Report is the continuing development of the in-plant intelligent control demonstration for the final project milestone and includes: simulation validation and the initial approach to experiment formulation.« less