skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Basic Research Needs for Carbon Capture: Beyond 2020

Abstract

This report is based on a SC/FE workshop on Carbon Capture: Beyond 2020, held March 4–5, 2010, to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The problem of thermodynamically efficient and scalable carbon capture stands as one of the greatest challenges for modern energy researchers. The vast majority of US and global energy use derives from fossil fuels, the combustion of which results in the emission of carbon dioxide into the atmosphere. These anthropogenic emissions are now altering the climate. Although many alternatives to combustion are being considered, the fact is that combustion will remain a principal component of the global energy system for decades to come. Today’s carbon capture technologies are expensive and cumbersome and energy intensive. If scientists could develop practical and cost-effective methods to capture carbon, those methods would at once alter the future of the largest industry in the world and provide a technical solution to one of the most vexing problems facing humanity. The carbon capture problem is a true grand challenge for today’s scientists. Postcombustion CO2 capture requires majormore » new developments in disciplines spanning fundamental theoretical and experimental physical chemistry, materials design and synthesis, and chemical engineering. To start with, the CO2 molecule itself is thermodynamically stable and binding to it requires a distortion of the molecule away from its linear and symmetric arrangement. This binding of the gas molecule cannot be too strong, however; the sheer quantity of CO2 that must be captured ultimately dictates that the capture medium must be recycled over and over. Hence the CO2 once bound, must be released with relatively little energy input. Further, the CO2 must be rapidly and selectively pulled out of a mixture that contains many other gaseous components. The related processes of precombustion capture and oxycombustion pose similar challenges. It is this nexus of high-speed capture with high selectivity and minimal energy loss that makes this a true grand challenge problem, far beyond any of today’s artificial molecular manipulation technologies, and one whose solution will drive the advancement of molecular science to a new level of sophistication. We have only to look to nature, where such chemical separations are performed routinely, to imagine what may be achieved. The hemoglobin molecule transports oxygen in the blood rapidly and selectively and releases it with minimal energy penalty. Despite our improved understanding of how this biological system works, we have yet to engineer a molecular capture system that uses the fundamental cooperativity process that lies at the heart of the functionality of hemoglobin. While such biological examples provide inspiration, we also note that newly developed theoretical and computational capabilities; the synthesis of new molecules, materials, and membranes; and the remarkable advances in characterization techniques enabled by the Department of Energy’s measurement facilities all create a favorable environment for a major new basic research push to solve the carbon capture problem within the next decade. The Department of Energy has established a comprehensive strategy to meet the nation’s needs in the carbon capture arena. This framework has been developed following a series of workshops that have engaged all the critical stakeholder communities. The strategy that has emerged is based upon a tiered approach, with Fossil Energy taking the lead in a series of applied research programs that will test and extend our current systems. ARPA-E (Advanced Research Projects Agency–Energy) is supporting potential breakthroughs based upon innovative proposals to rapidly harness today’s technical capabilities in ways not previously considered. These needs and plans have been well summarized in the report from a recent workshop—Carbon Capture 2020, held in October 5 and 6, 2009—focused on near-term strategies for carbon capture improvements (http://www.netl.doe.gov/publications/ proceedings/09/CC2020/pdfs/Richards_Summary.pdf ). Yet the fact remains that when the carbon capture problem is looked at closely, we see today’s technologies fall far short of making carbon capture an economically viable process. This situation reinforces the need for a parallel, intensive use-inspired basic research effort to address the problem. This was the overwhelming conclusion of a recent workshop—Carbon Capture: Beyond 2020, held March 4 and 5, 2010—and is the subject of the present report. To prepare for the second workshop, an in-depth assessment of current technologies for carbon capture was conducted; the result of this study was a factual document, Technology and Applied R&D Needs for Carbon Capture: Beyond 2020. This document, which was prepared by experts in current carbon capture processes, also summarized the technological gaps or bottlenecks that limit currently available carbon capture technologies. The report considered the separation processes needed for all three CO2 emission reduction strategies—postcombustion, precombustion, and oxycombustion—and assessed three primary separation technologies based on liquid absorption, membranes, and solid adsorption. The workshop “Carbon Capture: Beyond 2020” convened approximately 80 attendees from universities, national laboratories, and industry to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The workshop began with a plenary session including speakers who summarized the extent of the carbon capture challenge, the various current approaches, and the limitations of these technologies. Workshop attendees were then given the charge to identify high-priority basic research directions that could provide revolutionary new concepts to form the basis for separation technologies in 2020 and beyond. The participants were divided into three major panels corresponding to different approaches for separating gases to reduce carbon emissions—liquid absorption, solid adsorption, and membrane separations. Two other panels were instructed to attend each of these three technology panels to assess crosscutting issues relevant to characterization and computation. At the end of the workshop, a final plenary session was convened to summarize the most critical research needs identified by the workshop attendees in each of the three major technical panels and from the two cross-cutting panels. The reports of the three technical panels included a set of high level Priority Research Directions meant to serve as inspiration to researchers in multiple disciplines—materials science, chemistry, biology, computational science, engineering, and others—to address the huge scientific challenges facing this nation and the world as we seek technologies for large-scale carbon capture beyond 2020. These Priority Research Directions were clustered around three main areas, all tightly coupled: Understand and control the dynamic atomic-level and molecular-level interactions of the targeted species with the separation media. Discover and design new materials that incorporate designed structures and functionalities tuned for optimum separation properties. Tailor capture/release processes with alternative driving forces, taking advantage of a new generation of materials. In each of the technical panels, the participants identified two major crosscutting research themes. The first was the development of new analytical tools that can characterize materials structure and molecular processes across broad spatial and temporal scales and under realistic conditions that mimic those encountered in actual separation processes. Such tools are needed to examine interfaces and thin films at the atomic and molecular levels, achieving an atomic/molecular-scale understanding of gas–host structures, kinetics, and dynamics, and understanding and control of nanoscale synthesis in multiple dimensions. A second major crosscutting theme was the development of new computational tools for theory, modeling, and simulation of separation processes. Computational techniques can be used to elucidate mechanisms responsible for observed separations, predict new desired features for advanced separations materials, and guide future experiments, thus complementing synthesis and characterization efforts. These two crosscut areas underscored the fact that the challenge for future carbon capture technologies will be met only with multidisciplinary teams of scientists and engineers. In addition, it was noted that success in this fundamental research area must be closely coupled with successful applied research to ensure the continuing assessment and maturation of new technologies as they undergo scale-up and deployment. Carbon capture is a very rich scientific problem, replete with opportunity for basic researchers to advance the frontiers of science as they engage on one of the most important technical challenges of our times. This workshop report outlines an ambitious agenda for addressing the very difficult problem of carbon capture by creating foundational new basic science. This new science will in turn pave the way for many additional advances across a broad range of scientific disciplines and technology sectors.« less

Authors:
 [1];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
USDOE Office of Science (SC) (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1291240
Resource Type:
Program Document
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Alivisatos, Paul, and Buchanan, Michelle. Basic Research Needs for Carbon Capture: Beyond 2020. United States: N. p., 2010. Web.
Alivisatos, Paul, & Buchanan, Michelle. Basic Research Needs for Carbon Capture: Beyond 2020. United States.
Alivisatos, Paul, and Buchanan, Michelle. Thu . "Basic Research Needs for Carbon Capture: Beyond 2020". United States. https://www.osti.gov/servlets/purl/1291240.
@article{osti_1291240,
title = {Basic Research Needs for Carbon Capture: Beyond 2020},
author = {Alivisatos, Paul and Buchanan, Michelle},
abstractNote = {This report is based on a SC/FE workshop on Carbon Capture: Beyond 2020, held March 4–5, 2010, to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The problem of thermodynamically efficient and scalable carbon capture stands as one of the greatest challenges for modern energy researchers. The vast majority of US and global energy use derives from fossil fuels, the combustion of which results in the emission of carbon dioxide into the atmosphere. These anthropogenic emissions are now altering the climate. Although many alternatives to combustion are being considered, the fact is that combustion will remain a principal component of the global energy system for decades to come. Today’s carbon capture technologies are expensive and cumbersome and energy intensive. If scientists could develop practical and cost-effective methods to capture carbon, those methods would at once alter the future of the largest industry in the world and provide a technical solution to one of the most vexing problems facing humanity. The carbon capture problem is a true grand challenge for today’s scientists. Postcombustion CO2 capture requires major new developments in disciplines spanning fundamental theoretical and experimental physical chemistry, materials design and synthesis, and chemical engineering. To start with, the CO2 molecule itself is thermodynamically stable and binding to it requires a distortion of the molecule away from its linear and symmetric arrangement. This binding of the gas molecule cannot be too strong, however; the sheer quantity of CO2 that must be captured ultimately dictates that the capture medium must be recycled over and over. Hence the CO2 once bound, must be released with relatively little energy input. Further, the CO2 must be rapidly and selectively pulled out of a mixture that contains many other gaseous components. The related processes of precombustion capture and oxycombustion pose similar challenges. It is this nexus of high-speed capture with high selectivity and minimal energy loss that makes this a true grand challenge problem, far beyond any of today’s artificial molecular manipulation technologies, and one whose solution will drive the advancement of molecular science to a new level of sophistication. We have only to look to nature, where such chemical separations are performed routinely, to imagine what may be achieved. The hemoglobin molecule transports oxygen in the blood rapidly and selectively and releases it with minimal energy penalty. Despite our improved understanding of how this biological system works, we have yet to engineer a molecular capture system that uses the fundamental cooperativity process that lies at the heart of the functionality of hemoglobin. While such biological examples provide inspiration, we also note that newly developed theoretical and computational capabilities; the synthesis of new molecules, materials, and membranes; and the remarkable advances in characterization techniques enabled by the Department of Energy’s measurement facilities all create a favorable environment for a major new basic research push to solve the carbon capture problem within the next decade. The Department of Energy has established a comprehensive strategy to meet the nation’s needs in the carbon capture arena. This framework has been developed following a series of workshops that have engaged all the critical stakeholder communities. The strategy that has emerged is based upon a tiered approach, with Fossil Energy taking the lead in a series of applied research programs that will test and extend our current systems. ARPA-E (Advanced Research Projects Agency–Energy) is supporting potential breakthroughs based upon innovative proposals to rapidly harness today’s technical capabilities in ways not previously considered. These needs and plans have been well summarized in the report from a recent workshop—Carbon Capture 2020, held in October 5 and 6, 2009—focused on near-term strategies for carbon capture improvements (http://www.netl.doe.gov/publications/ proceedings/09/CC2020/pdfs/Richards_Summary.pdf ). Yet the fact remains that when the carbon capture problem is looked at closely, we see today’s technologies fall far short of making carbon capture an economically viable process. This situation reinforces the need for a parallel, intensive use-inspired basic research effort to address the problem. This was the overwhelming conclusion of a recent workshop—Carbon Capture: Beyond 2020, held March 4 and 5, 2010—and is the subject of the present report. To prepare for the second workshop, an in-depth assessment of current technologies for carbon capture was conducted; the result of this study was a factual document, Technology and Applied R&D Needs for Carbon Capture: Beyond 2020. This document, which was prepared by experts in current carbon capture processes, also summarized the technological gaps or bottlenecks that limit currently available carbon capture technologies. The report considered the separation processes needed for all three CO2 emission reduction strategies—postcombustion, precombustion, and oxycombustion—and assessed three primary separation technologies based on liquid absorption, membranes, and solid adsorption. The workshop “Carbon Capture: Beyond 2020” convened approximately 80 attendees from universities, national laboratories, and industry to assess the basic research needed to address the current technical bottlenecks in carbon capture processes and to identify key research priority directions that will provide the foundations for future carbon capture technologies. The workshop began with a plenary session including speakers who summarized the extent of the carbon capture challenge, the various current approaches, and the limitations of these technologies. Workshop attendees were then given the charge to identify high-priority basic research directions that could provide revolutionary new concepts to form the basis for separation technologies in 2020 and beyond. The participants were divided into three major panels corresponding to different approaches for separating gases to reduce carbon emissions—liquid absorption, solid adsorption, and membrane separations. Two other panels were instructed to attend each of these three technology panels to assess crosscutting issues relevant to characterization and computation. At the end of the workshop, a final plenary session was convened to summarize the most critical research needs identified by the workshop attendees in each of the three major technical panels and from the two cross-cutting panels. The reports of the three technical panels included a set of high level Priority Research Directions meant to serve as inspiration to researchers in multiple disciplines—materials science, chemistry, biology, computational science, engineering, and others—to address the huge scientific challenges facing this nation and the world as we seek technologies for large-scale carbon capture beyond 2020. These Priority Research Directions were clustered around three main areas, all tightly coupled: Understand and control the dynamic atomic-level and molecular-level interactions of the targeted species with the separation media. Discover and design new materials that incorporate designed structures and functionalities tuned for optimum separation properties. Tailor capture/release processes with alternative driving forces, taking advantage of a new generation of materials. In each of the technical panels, the participants identified two major crosscutting research themes. The first was the development of new analytical tools that can characterize materials structure and molecular processes across broad spatial and temporal scales and under realistic conditions that mimic those encountered in actual separation processes. Such tools are needed to examine interfaces and thin films at the atomic and molecular levels, achieving an atomic/molecular-scale understanding of gas–host structures, kinetics, and dynamics, and understanding and control of nanoscale synthesis in multiple dimensions. A second major crosscutting theme was the development of new computational tools for theory, modeling, and simulation of separation processes. Computational techniques can be used to elucidate mechanisms responsible for observed separations, predict new desired features for advanced separations materials, and guide future experiments, thus complementing synthesis and characterization efforts. These two crosscut areas underscored the fact that the challenge for future carbon capture technologies will be met only with multidisciplinary teams of scientists and engineers. In addition, it was noted that success in this fundamental research area must be closely coupled with successful applied research to ensure the continuing assessment and maturation of new technologies as they undergo scale-up and deployment. Carbon capture is a very rich scientific problem, replete with opportunity for basic researchers to advance the frontiers of science as they engage on one of the most important technical challenges of our times. This workshop report outlines an ambitious agenda for addressing the very difficult problem of carbon capture by creating foundational new basic science. This new science will in turn pave the way for many additional advances across a broad range of scientific disciplines and technology sectors.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2010},
month = {3}
}

Program Document:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that may hold this item.

Save / Share: