skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman, and ab Initio Methods: Band Strengths for Atmospheric Measurements

Abstract

Hydroxyacetone (acetol) is a simple organic molecule of interest in both the astrophysical and atmospheric communities, having recently been observed in biomass burning events, as well as a known degradation product of isoprene oxidation. However, its vibrational assignment has never been fully completed, and few quantitative data are available for its detection via infrared spectroscopy. Our recent acquisition of both the pressure-broadened gas-phase data and the far-IR spectra now allow for unambiguous assignment of several (new) bands. In particular, the observed C-type bands of several fundamentals (particularly in the far-infrared) and a few combination bands demonstrate that the monomer is in a planar (Cs) conformation, at least a majority of the time. As suggested by other researchers, the monomer is a cis-cis conformer stabilized by an intramolecular O—H···O=C hydrogen bond forming a five-membered planar ring structure. Band assignments in the Cs point group are justified (at least for a good fraction of the molecules in the ensemble) by the presence of the C-type bands. The results and band assignments are well confirmed by both ab initio MP2-ccpvtz calculations as well as GAMESS (B3LYP) theoretical calculations. In addition, using vetted methods for quantitative measurements, we report the first IR absorption bandmore » strengths of acetol (also in electronic format) that can be used for atmospheric monitoring and other applications.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation (NA-20)
OSTI Identifier:
1290389
Report Number(s):
PNNL-SA-117947
Journal ID: ISSN 1089-5639; 453040142
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory; Journal Volume: 120; Journal Issue: 30
Country of Publication:
United States
Language:
English

Citation Formats

Lindenmaier, Rodica, Tipton, Nicole, Sams, Robert L., Brauer, Carolyn S., Blake, Thomas A., Williams, Stephen D., and Johnson, Timothy J. Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman, and ab Initio Methods: Band Strengths for Atmospheric Measurements. United States: N. p., 2016. Web. doi:10.1021/acs.jpca.6b05045.
Lindenmaier, Rodica, Tipton, Nicole, Sams, Robert L., Brauer, Carolyn S., Blake, Thomas A., Williams, Stephen D., & Johnson, Timothy J. Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman, and ab Initio Methods: Band Strengths for Atmospheric Measurements. United States. doi:10.1021/acs.jpca.6b05045.
Lindenmaier, Rodica, Tipton, Nicole, Sams, Robert L., Brauer, Carolyn S., Blake, Thomas A., Williams, Stephen D., and Johnson, Timothy J. Thu . "Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman, and ab Initio Methods: Band Strengths for Atmospheric Measurements". United States. doi:10.1021/acs.jpca.6b05045.
@article{osti_1290389,
title = {Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman, and ab Initio Methods: Band Strengths for Atmospheric Measurements},
author = {Lindenmaier, Rodica and Tipton, Nicole and Sams, Robert L. and Brauer, Carolyn S. and Blake, Thomas A. and Williams, Stephen D. and Johnson, Timothy J.},
abstractNote = {Hydroxyacetone (acetol) is a simple organic molecule of interest in both the astrophysical and atmospheric communities, having recently been observed in biomass burning events, as well as a known degradation product of isoprene oxidation. However, its vibrational assignment has never been fully completed, and few quantitative data are available for its detection via infrared spectroscopy. Our recent acquisition of both the pressure-broadened gas-phase data and the far-IR spectra now allow for unambiguous assignment of several (new) bands. In particular, the observed C-type bands of several fundamentals (particularly in the far-infrared) and a few combination bands demonstrate that the monomer is in a planar (Cs) conformation, at least a majority of the time. As suggested by other researchers, the monomer is a cis-cis conformer stabilized by an intramolecular O—H···O=C hydrogen bond forming a five-membered planar ring structure. Band assignments in the Cs point group are justified (at least for a good fraction of the molecules in the ensemble) by the presence of the C-type bands. The results and band assignments are well confirmed by both ab initio MP2-ccpvtz calculations as well as GAMESS (B3LYP) theoretical calculations. In addition, using vetted methods for quantitative measurements, we report the first IR absorption band strengths of acetol (also in electronic format) that can be used for atmospheric monitoring and other applications.},
doi = {10.1021/acs.jpca.6b05045},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 30,
volume = 120,
place = {United States},
year = {Thu Aug 04 00:00:00 EDT 2016},
month = {Thu Aug 04 00:00:00 EDT 2016}
}
  • Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm-1 range. Vibrational assignments of all fundamental modes are made for both molecules based on far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-transmore » conformer, but a few appear to be uniquely associated the s-cis conformer, notably ν16c at 730.90 cm-1, which displays a substantial intensity increase with temperature (62% upon going from 5 to 50 oC). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, ~doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.« less
  • Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm -1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C 2v symmetry for ortho-xylene, andmore » two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have C s and C 2 symmetry, and for para-xylene these conformers have C 2v or C 2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the C s conformer for meta-xylene and the C 2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.« less
  • This report does a complete vibrational spectal analysis of 2-methylpropionyl fluoride using microwave, infrared, and Raman spectra.
  • Infrared absorption spectra of ammonia borane vapor have been recorded between 3600 and 600 cm-1. Of the eleven infrared active modes, seven of the vibrational modes of NH3 11BH3 have been observed and four of the vibrational modes of NH3 10BH3 were observed. The spectra were recorded with sufficient resolution to observe the rotational structure of the bands, which allowed for preliminary least squares fitting of the band origins and rotational constants. First principals electronic structure calculations were performed to obtain anharmonic band origins and their intensities. The band assignments are discussed in relation to other spectroscopic techniques that havemore » been used to study this molecule. A semi empirical estimate of the vapor pressure of ammonia borane at room temperature (22 °C) was made and found to be ~ 1 × 10-4 Torr. The assignment of the measured modes was aided by the calculated anharmonic frequencies and their infrared intensities. The combination of the CCSD(T) harmonic frequencies with the B3LYP anharmonicities, obtained from second order vibrational perturbation theory, was found to produce an overall best agreement with the measured band origins.« less
  • Ab initio calculations have been carried out to predict the equilibrium structures of monomeric and dimeric CH{sub 3}OOOH, H{sub 3}SiOOOH, CH{sub 3}OOH, and H{sub 3}SiOOH. The calculated relatively strong binding energies for the intermolecularly hydrogen-bonded cyclic dimers of the hydrotrioxides and hydroperoxides investigated (BE = 6-8 kcal/mol) support the belief that self-association is the characteristic structural feature of these species. Ab initio calculations of the theoretical acidities, defined as the energy differences between the energy minima for the neutral molecules and those for the corresponding anions, reveal the following order of the gas-phase acidities: H{sub 3}SiOOOH > CH{sub 3}OOOH >more » H{sub 3}SiOOH > CH{sub 3}OOH. The investigation of relative bond strengths indicates that the RO-OOH bonds in the hydrotrioxides are weaker than the ROO-OH bonds, supporting the predictions from the previous thermochemical and kinetic studies that the split into RO{sm bullet} and {sm bullet}OOH radicals is the lowest energy radical decomposition pathway available for these polyoxides.« less