skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS

Abstract

We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg(2) South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ~20 clusters based on redshift and central density, performing a joint X-ray spectral fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0 < r < 1.5R (500), which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z = 0 to z = 1.2. We find that high-z (0.6 < z < 1.2) clusters are slightly (~30%) cooler both in the inner (r < 0.1R (500)) and outer (r > R (500)) regions than their low-z (0.3 < z < 0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Confirming earlier results from this data set, we find an absence ofmore » strong cool cores at high z, manifested in this analysis as a significantly lower observed pressure in the central 0.1R (500) of the high-z cool-core subset of clusters compared to the low-z cool-core subset. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r lsim 0.7R (500)—this may reflect a long-standing balance between cooling and feedback over long timescales and large physical scales. We observe a slight flattening of the entropy profile at r gsim R (500) in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (~3×) rate at which group-mass (~2 keV) halos, which would go undetected at our survey depth, are accreting onto the cluster at z ~ 1. This work demonstrates a powerful method for inferring spatially resolved cluster properties in the case where individual cluster signal-to-noise is low, but the number of observed clusters is high.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
SPT
OSTI Identifier:
1289776
Report Number(s):
FERMILAB-PUB-14-375-A; arXiv:1404.6250
Journal ID: ISSN 1538-4357; 1292451
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Journal Article
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Volume: 794; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

McDonald, M., Benson, B. A., Vikhlinin, A., Aird, K. A., Allen, S. W., Bautz, M., Bayliss, M., Bleem, L. E., Bocquet, S., Brodwin, M., Carlstrom, J. E., Chang, C. L., Cho, H. M., Clocchiatti, A., Crawford, T. M., Crites, A. T., de Haan, T., Dobbs, M. A., Foley, R. J., Forman, W. R., George, E. M., Gladders, M. D., Gonzalez, A. H., Halverson, N. W., Hlavacek-Larrondo, J., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Jones, C., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Liu, J., Lueker, M., Luong-Van, D., Mantz, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Miller, E. D., Mocanu, L., Mohr, J. J., Murray, S. S., Padin, S., Pryke, C., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Spieler, H. G., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Williamson, R., Zahn, O., and Zenteno, A. THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS. United States: N. p., 2014. Web. doi:10.1088/0004-637X/794/1/67.
McDonald, M., Benson, B. A., Vikhlinin, A., Aird, K. A., Allen, S. W., Bautz, M., Bayliss, M., Bleem, L. E., Bocquet, S., Brodwin, M., Carlstrom, J. E., Chang, C. L., Cho, H. M., Clocchiatti, A., Crawford, T. M., Crites, A. T., de Haan, T., Dobbs, M. A., Foley, R. J., Forman, W. R., George, E. M., Gladders, M. D., Gonzalez, A. H., Halverson, N. W., Hlavacek-Larrondo, J., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Jones, C., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Liu, J., Lueker, M., Luong-Van, D., Mantz, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Miller, E. D., Mocanu, L., Mohr, J. J., Murray, S. S., Padin, S., Pryke, C., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Spieler, H. G., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Williamson, R., Zahn, O., & Zenteno, A. THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS. United States. doi:10.1088/0004-637X/794/1/67.
McDonald, M., Benson, B. A., Vikhlinin, A., Aird, K. A., Allen, S. W., Bautz, M., Bayliss, M., Bleem, L. E., Bocquet, S., Brodwin, M., Carlstrom, J. E., Chang, C. L., Cho, H. M., Clocchiatti, A., Crawford, T. M., Crites, A. T., de Haan, T., Dobbs, M. A., Foley, R. J., Forman, W. R., George, E. M., Gladders, M. D., Gonzalez, A. H., Halverson, N. W., Hlavacek-Larrondo, J., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Jones, C., Keisler, R., Knox, L., Lee, A. T., Leitch, E. M., Liu, J., Lueker, M., Luong-Van, D., Mantz, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Miller, E. D., Mocanu, L., Mohr, J. J., Murray, S. S., Padin, S., Pryke, C., Reichardt, C. L., Rest, A., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Spieler, H. G., Stalder, B., Stanford, S. A., Staniszewski, Z., Stark, A. A., Story, K. T., Stubbs, C. W., Vanderlinde, K., Vieira, J. D., Williamson, R., Zahn, O., and Zenteno, A. Wed . "THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS". United States. doi:10.1088/0004-637X/794/1/67. https://www.osti.gov/servlets/purl/1289776.
@article{osti_1289776,
title = {THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS},
author = {McDonald, M. and Benson, B. A. and Vikhlinin, A. and Aird, K. A. and Allen, S. W. and Bautz, M. and Bayliss, M. and Bleem, L. E. and Bocquet, S. and Brodwin, M. and Carlstrom, J. E. and Chang, C. L. and Cho, H. M. and Clocchiatti, A. and Crawford, T. M. and Crites, A. T. and de Haan, T. and Dobbs, M. A. and Foley, R. J. and Forman, W. R. and George, E. M. and Gladders, M. D. and Gonzalez, A. H. and Halverson, N. W. and Hlavacek-Larrondo, J. and Holder, G. P. and Holzapfel, W. L. and Hrubes, J. D. and Jones, C. and Keisler, R. and Knox, L. and Lee, A. T. and Leitch, E. M. and Liu, J. and Lueker, M. and Luong-Van, D. and Mantz, A. and Marrone, D. P. and McMahon, J. J. and Meyer, S. S. and Miller, E. D. and Mocanu, L. and Mohr, J. J. and Murray, S. S. and Padin, S. and Pryke, C. and Reichardt, C. L. and Rest, A. and Ruhl, J. E. and Saliwanchik, B. R. and Saro, A. and Sayre, J. T. and Schaffer, K. K. and Shirokoff, E. and Spieler, H. G. and Stalder, B. and Stanford, S. A. and Staniszewski, Z. and Stark, A. A. and Story, K. T. and Stubbs, C. W. and Vanderlinde, K. and Vieira, J. D. and Williamson, R. and Zahn, O. and Zenteno, A.},
abstractNote = {We present the results of an X-ray analysis of 80 galaxy clusters selected in the 2500 deg(2) South Pole Telescope survey and observed with the Chandra X-ray Observatory. We divide the full sample into subsamples of ~20 clusters based on redshift and central density, performing a joint X-ray spectral fit to all clusters in a subsample simultaneously, assuming self-similarity of the temperature profile. This approach allows us to constrain the shape of the temperature profile over 0 < r < 1.5R (500), which would be impossible on a per-cluster basis, since the observations of individual clusters have, on average, 2000 X-ray counts. The results presented here represent the first constraints on the evolution of the average temperature profile from z = 0 to z = 1.2. We find that high-z (0.6 < z < 1.2) clusters are slightly (~30%) cooler both in the inner (r < 0.1R (500)) and outer (r > R (500)) regions than their low-z (0.3 < z < 0.6) counterparts. Combining the average temperature profile with measured gas density profiles from our earlier work, we infer the average pressure and entropy profiles for each subsample. Confirming earlier results from this data set, we find an absence of strong cool cores at high z, manifested in this analysis as a significantly lower observed pressure in the central 0.1R (500) of the high-z cool-core subset of clusters compared to the low-z cool-core subset. Overall, our observed pressure profiles agree well with earlier lower-redshift measurements, suggesting minimal redshift evolution in the pressure profile outside of the core. We find no measurable redshift evolution in the entropy profile at r lsim 0.7R (500)—this may reflect a long-standing balance between cooling and feedback over long timescales and large physical scales. We observe a slight flattening of the entropy profile at r gsim R (500) in our high-z subsample. This flattening is consistent with a temperature bias due to the enhanced (~3×) rate at which group-mass (~2 keV) halos, which would go undetected at our survey depth, are accreting onto the cluster at z ~ 1. This work demonstrates a powerful method for inferring spatially resolved cluster properties in the case where individual cluster signal-to-noise is low, but the number of observed clusters is high.},
doi = {10.1088/0004-637X/794/1/67},
journal = {The Astrophysical Journal (Online)},
issn = {1538-4357},
number = 1,
volume = 794,
place = {United States},
year = {2014},
month = {9}
}