skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics

Abstract

This report summarizes the work of Task A and B for the period 2013-2016. For Task A the work is for direct detection of dark matter with the single-phase liquid argon experiment Mini-CLEAN. For Task B the work is for the search for new physics in the analysis of fluorescence events with the Auger experiment and for the search for the indirect detection of dark matter with the HAWC experiment.

Authors:
 [1];  [1]
  1. Univ. of New Mexico, Albuquerque, NM (United States)
Publication Date:
Research Org.:
Univ. of New Mexico, Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1289694
Report Number(s):
DOE-UNM-10080-1
TRN: US1601695
DOE Contract Number:
SC0010080
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 79 ASTRONOMY AND ASTROPHYSICS; NONLUMINOUS MATTER; ARGON; DETECTION; FLUORESCENCE; ASTROPHYSICS; CRYOGENIC FLUIDS; ELEMENTARY PARTICLES; COSMIC RADIATION; CHERENKOV COUNTERS; PHOTOMULTIPLIERS; SCINTILLATION COUNTERS; ELECTRONIC CIRCUITS; RESEARCH PROGRAMS; Dark Matter; New Physics; Search

Citation Formats

Matthews, John A.J., and Gold, Michael S. Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics. United States: N. p., 2016. Web. doi:10.2172/1289694.
Matthews, John A.J., & Gold, Michael S. Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics. United States. doi:10.2172/1289694.
Matthews, John A.J., and Gold, Michael S. 2016. "Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics". United States. doi:10.2172/1289694. https://www.osti.gov/servlets/purl/1289694.
@article{osti_1289694,
title = {Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics},
author = {Matthews, John A.J. and Gold, Michael S.},
abstractNote = {This report summarizes the work of Task A and B for the period 2013-2016. For Task A the work is for direct detection of dark matter with the single-phase liquid argon experiment Mini-CLEAN. For Task B the work is for the search for new physics in the analysis of fluorescence events with the Auger experiment and for the search for the indirect detection of dark matter with the HAWC experiment.},
doi = {10.2172/1289694},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Technical Report:

Save / Share:
  • Our research focuses on the “Cosmic Frontier”, one of the three principle thrusts of the DoE Office of Science High Energy Physics research program. The 2013 community summer study “Snowmass on the Mississippi” catalyzed joint work to describe the status and future prospects of this research thrust. Over its history, the field of cosmic ray studies has provided many discoveries of central importance to the the progress of high energy physics, including the identification of new elementary particles, measurements of particle interactions far above accelerator energies, and the confirmation of neutrino oscillations. In our research we continued this tradition, employingmore » 2 instruments (the Auger Observatory and the HAWC Observatory) to study high energy physics questions using cosmic rays. One approach to addressing particle physics questions at the cosmic frontier is to study the very highest energy cosmic rays. This has been the major thrust of our research effort. The two largest currently operating ultra-high energy cosmic ray (UHECR) observatories are the Pierre Auger Observatory in the Southern hemisphere, covering an area of 3000 km 2 and the Telescope Array (TA) in the Northern hemisphere, covering about 700 km 2. The observatories sample the cosmic ray air showers at ground level (with 1660 water Cerenkov stations in the Auger surface detector), and also measure the longitudinal development of air showers on clear moonless nights (approx. 10% of the events) using atmospheric fluorescence detectors. The observatories have recently installed low energy extensions, which provide an overlap with the LHC energy regime. The Auger and TA teams have established joint working groups to discuss experimental methods, compare data analyses and modeling, and perform cross calibrations. Another approach is to study high energy gamma rays. The High Altitude Water Cerenkov (HAWC) gamma-ray observatory is located at 4100 m above sea level near Pico de Orizaba in central Mexico. HAWC is the most sensitive, wide field of view, TeV gamma-ray observatory in operation. After 4 years of construction, operation of the full detector began in March 2015. The HAWC detector contains 300 tanks each 7.3 m in diameter and 4.5 m deep containing pure water. Each water tank is instrumented with 4 upward-viewing photomultiplier tubes mounted at their bottom. The water tanks record the energy deposited by and arrival times of the constituent components of impinging extensive air showers (EAS). The tanks are close-packed to optimize the spatial sampling of the shower front. The distribution of deposited energy across the shower is used for gamma-hadron rejection. Showers with large energy deposit away from the core are rejected as being hadron-initiated. The detector operates at full efficiency above 3 TeV. The angular resolution above that energy approaches 0.1 degree. As the detector operates both day and night, the wide field of view of ~2 sr, allows ~2/3 of the sky to be observed each day.« less
  • The grant supported research on an experimental search for evidence of dark matter interactions with normal matter. The PI carried out the research as a member of the LUX and LZ collaborations. The LUX research team collected a first data set with the LUX experiment, a large liquid xenon detector installed in the Sanford Underground Research Facility (SURF). The first results were published in Physical Review Letters on March 4, 2014. The journal Nature named the LUX result a scientific highlight of the year for 2013. In addition, the LZ collaboration submitted the full proposal for the Lux Zeplin experiment,more » which has since been approved by DOE-HEP as a second-generation dark matter experiment. Witherell is the Level 2 manager for the Outer Detector System on the LUX-Zeplin experiment.« less
  • The next decade will bring massive new data sets from experiments of the direct detection of weakly interacting massive particle dark matter. Mapping the data sets to the particle-physics properties of dark matter is complicated not only by the considerable uncertainties in the dark-matter model, but by its poorly constrained local distribution function (the 'astrophysics' of dark matter). I propose a shift in how to think about direct-detection data analysis. I show that by treating the astrophysical and particle-physics uncertainties of dark matter on equal footing, and by incorporating a combination of data sets into the analysis, one may recovermore » both the particle physics and astrophysics of dark matter. Not only does such an approach yield more accurate estimates of dark-matter properties, but it may illuminate how dark matter coevolves with galaxies.« less
  • Dark Matter Search - During the period of performance, our group continued the search for dark matter in the form of weakly interacting massive particles or WIMPs. As a key member of the CDMS (Cryogenic Dark Matter Search) collaboration, we completed the CDMS II experiment which led the field in sensitivity for more than five years. We fabricated all detectors, and participated in detector testing and verification. In addition, we participated in the construction and operation of the facility at the Soudan Underground Laboratory and played key roles in the data acquisition and analysis. Towards the end of the performancemore » period, we began operating the SuperCDMS Soudan experiment, which consists of 15 advanced Ge (9 kg) detectors. The advanced detector design called iZIP grew out of our earlier DOE Particle Detector R&D program which demonstrated the rejection of surface electrons to levels where they are no longer the dominant source of background. Our group invented this advanced design and these larger detectors were fabricated on the Stanford campus in collaboration with the SLAC CDMS group and the Santa Clara University group. The sensitivity reach is expected to be up to 5 times better than CDMS II after two years of operation. We will check the new limits on WIMPs set by XENON100, and we expect improved sensitivity for light mass WIMPs beyond that of any other existing experiment. Our group includes the Spokesperson for SuperCDMS and continues to make important contributions to improvements in the detector technology which are enabling the very low trigger thresholds used to explore the low mass WIMP region. We are making detailed measurements of the charge transport and trapping within Ge crystals, measuring the diffusive trapping distance of the quasiparticle excitations within the Al phonon collector fins on the detector surface, and we are contributing to the development of much improved detector Monte Carlos which are essential to guide the detector design and optimize the analysis. Neutrino Physics – In the period of performance the neutrino group successfully completed the construction of EXO-200 and commissioned the detector. Science data taking started on Jun 1, 2011. With the discovery of the 2-neutrino double-beta decay in 136-Xe and the first measurement of the 0-neutrino mode resulting in the most stringent limit of Majorana masses, our group continues to be a leading innovator in the field of neutrino physics which is central to DOE-HEP Intensity Frontier program. The phenomenon of neutrino oscillations, in part elucidated by our earlier efforts with the Palo Verde and KamLAND experiments, provides the crucial information that neutrino masses are non-zero and, yet, it contains no information on the value of the neutrino mass scale. In recent times our group has therefore shifted its focus to a high sensitivity 0-neutrino double beta decay program, EXO. The 0-neutrino double beta decay provides the best chance of extending the sensitivity to the neutrino mass scale below 10 meV but, maybe more importantly, it tests the nature of the neutrino wave function, providing the most sensitive probe for Majorana particles and lepton number violation. The EXO program, formulated by our group several years ago, plans to use up to tonnes of the isotope 136-Xe to study the 0-neutrino double beta decay mode. The EXO-200 detector is the first step in this program and it represents the only large US-led and based experiment taking data. The EXO-200 isotope enrichment program broke new grounds for the enterprise of double beta decay. The detector design and material selection program paid off, resulting in a background that is among the very best in the field. The “first light" of EXO-200 was very exciting with the discovery -in the first month of data- of the rarest 2-neutrino double beta decay mode ever observed. The lower limit on the 0-neutrino double beta decay half-life, published in Phys. Rev. Lett. and based on the first 120 days of data is the second best but, when translated into a Majorana mass scale, it is one of the most stringent constraint we have on neutrino masses. Indeed, such a limit was the first result to contradict a claim of discovery in 76-Ge for most nuclear matrix elements calculations. As we continue data taking and plan some modest upgrades to EXO-200 our group is also very active in the design of nEXO, a 5 tonne detector based on the technology demonstrated by EXO-200. Over the years we have made it a tradition to explore the frontier and not to be shy about looking in new directions and re-inventing ourselves to best take advantage of the precious few opportunities provided by Nature. We have also cultivated a number of young people at all levels and, by now, many of the undergraduates, graduate students and postdocs educated by this group have leading positions in academia and industry around the world.« less
  • During the period 2010-­2012, we conducted particle physics research with the ATLAS and CDF experiments and developed new instrumentation for tracking fundamental particles.