skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: UNESE MSIR Summary, FY15-FY16

Abstract

Summary of FY15 and FY16 MSIR (Multi-Spectral and InfraRed) work for UNESE.

Authors:
 [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1289385
Report Number(s):
LLNL-TR-698679
DOE Contract Number:
AC52-07NA27344
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Henderson, J. R., and Zelinski, M. E.. UNESE MSIR Summary, FY15-FY16. United States: N. p., 2016. Web. doi:10.2172/1289385.
Henderson, J. R., & Zelinski, M. E.. UNESE MSIR Summary, FY15-FY16. United States. doi:10.2172/1289385.
Henderson, J. R., and Zelinski, M. E.. 2016. "UNESE MSIR Summary, FY15-FY16". United States. doi:10.2172/1289385. https://www.osti.gov/servlets/purl/1289385.
@article{osti_1289385,
title = {UNESE MSIR Summary, FY15-FY16},
author = {Henderson, J. R. and Zelinski, M. E.},
abstractNote = {Summary of FY15 and FY16 MSIR (Multi-Spectral and InfraRed) work for UNESE.},
doi = {10.2172/1289385},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 7
}

Technical Report:

Save / Share:
  • Sandia is participating in the third phase of an is a contributing partner to a U.S.-German "Joint Project" entitled "Comparison of current constitutive models and simulation procedures on the basis of model calculations of the thermo-mechanical behavior and healing of rock salt." The first goal of the project is to check the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure storage of radioactive wastes in rock salt, thereby enhancing the acceptance ofmore » the results. These results may ultimately be used to make various assertions regarding both the stability analysis of an underground repository in salt, during the operating phase, and the long-term integrity of the geological barrier against the release of harmful substances into the biosphere, in the post-operating phase.« less
  • In support of the development of accelerator-driven production of the fission product Mo 99, computational fluid dynamics (CFD) simulations of an electron-beam irradiated, experimental-scale bubble chamber have been conducted in order to aid in interpretation of existing experimental results, provide additional insights into the physical phenomena, and develop predictive thermal hydraulic capabilities that can be applied to full-scale target solution vessels. Toward that end, a custom hybrid Eulerian-Eulerian-Lagrangian multiphase solver was developed, and simulations have been performed on high-resolution meshes. Good agreement between experiments and simulations has been achieved, especially with respect to the prediction of the maximum temperature ofmore » the uranyl sulfate solution in the experimental vessel. These positive results suggest that the simulation methodology that has been developed will prove to be suitable to assist in the development of full-scale production hardware.« less
  • The Nuclear Energy Knowledge and Validation Center (NEKVaC) is a new initiative by the Department of Energy and the Idaho National Laboratory to coordinate and focus the resources and expertise that exist with the DOE Complex toward solving issues in modern nuclear code validation. In time, code owners, users, and developers will view the Center as a partner and essential resource for acquiring the best practices and latest techniques for validating codes, for guidance in planning and executing experiments, for facilitating access to, and maximizing the usefulness of, existing data, and for preserving knowledge for continual use by nuclear professionalsmore » and organizations for their own validation needs. The scope of the center covers many inter-related activities which will need to be cultivated carefully in the near-term and managed properly once the Center is fully functional. Three areas comprise the principal mission: 1) identification and prioritization of projects that extend the field of validation science and its application to modern codes, 2) adapt or develop best practices and guidelines for high fidelity multiphysics/multiscale analysis code development and associated experiment design, and 3) define protocols for data acquisition and knowledge preservation and provide a portal for access to databases currently scattered among numerous organizations. These mission areas, while each having a unique focus, are inter-dependent and complementary. Likewise, all activities supported by the NEKVaC, both near-term and long-term), must possess elements supporting all three. This cross-cutting nature is essential to ensuring that activities and supporting personnel do not become ‘stove-piped’, i.e. focused so much on a specific function that the activity itself becomes the objective rather than the achieving the larger vision. Achieving the broader vision will require a healthy and accountable level of activity in each of the areas. This will take time and significant DOE support. Growing too fast (budget-wise) will not allow ideas to mature, lessons to be learned, and taxpayer money to be spent responsibly. The process should be initiated with a small set of tasks, executed over a short but reasonable term, that will exercise most if not all aspects of the Center’s potential operation. The initial activities described in this report have a high potential for near-term success in demonstrating Center objectives but also to work out some of the issues in task execution, communication between functional elements, and the ability to raise awareness of the Center and cement stakeholder buy-in. This report begins with a description of the Mission areas; specifically the role played by each and the types of activities for which they are responsible. It then lists and describes the proposed near-term tasks upon which future efforts can build.« less
  • Hardware expansion and detector calibrations were the focus of FY 16 ISCP efforts in the Nuclear Counting Facility. Work focused on four main objectives: 1) Installation, calibration, and validation of 4 additional HPGe gamma spectrometry systems; including two Low Energy Photon Spectrometers (LEPS). 2) Re-Calibration and validation of 3 previously installed gamma-ray detectors, 3) Integration of the new systems into the NCF IT infrastructure, and 4) QA/QC and maintenance of current detector systems.
  • Salt formations represent a promising host for disposal of nuclear waste in the United States and Germany. Together, these countries provided fully developed safety cases for bedded salt and domal salt, respectively. Today, Germany and the United States find themselves in similar positions with respect to salt formations serving as repositories for heat-generating nuclear waste. German research centers are evaluating bedded and pillow salt formations to contrast with their previous safety case made for the Gorleben dome. Sandia National Laboratories is collaborating on this effort as an Associate Partner, and this report summarizes that teamwork. Sandia and German research groupsmore » have a long-standing cooperative approach to repository science, engineering, operations, safety assessment, testing, modeling and other elements comprising the basis for salt disposal. Germany and the United States hold annual bilateral workshops, which cover a spectrum of issues surrounding the viability of salt formations. Notably, recent efforts include development of a database for features, events, and processes applying broadly and generically to bedded and domal salt. Another international teaming activity evaluates salt constitutive models, including hundreds of new experiments conducted on bedded salt from the Waste Isolation Pilot Plant. These extensive collaborations continue to build the scientific basis for salt disposal. Repository deliberations in the United States are revisiting bedded and domal salt for housing a nuclear waste repository. By agreeing to collaborate with German peers, our nation stands to benefit by assurance of scientific position, exchange of operational concepts, and approach to elements of the safety case, all reflecting cost and time efficiency.« less