skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Assessment of SRS ambient air monitoring network

Abstract

Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases duringmore » just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned« less

Authors:
 [1];  [1]
  1. Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
Publication Date:
Research Org.:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1288261
Report Number(s):
SRNL-STI-2016-00403_R1
TRN: US1601683
DOE Contract Number:
AC09-08SR22470
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 54 ENVIRONMENTAL SCIENCES; AIR SAMPLERS; AIR; RADIATION MONITORING; SAVANNAH RIVER PLANT; EVALUATION; DETECTION; EFFICIENCY; ABUNDANCE; PERFORMANCE; SAMPLING; POSITIONING

Citation Formats

Abbott, K., and Jannik, T. Assessment of SRS ambient air monitoring network. United States: N. p., 2016. Web. doi:10.2172/1288261.
Abbott, K., & Jannik, T. Assessment of SRS ambient air monitoring network. United States. doi:10.2172/1288261.
Abbott, K., and Jannik, T. 2016. "Assessment of SRS ambient air monitoring network". United States. doi:10.2172/1288261. https://www.osti.gov/servlets/purl/1288261.
@article{osti_1288261,
title = {Assessment of SRS ambient air monitoring network},
author = {Abbott, K. and Jannik, T.},
abstractNote = {Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned},
doi = {10.2172/1288261},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Technical Report:

Save / Share:
  • A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) formore » every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National Emission Standards for Hazardous Air Pollutants maximum exposed individual location (i.e., Frenchman’s Cabin) was no more than 0.1 mrem yr–1 (i.e., 1% of the 10 mrem yr–1 standard). Detection frequencies were calculated separately for the onsite and offsite monitoring network. As expected, detection frequencies were generally less for the offsite sampling network compared to the onsite network. Overall, the monitoring network is very effective at detecting the potential releases of Cs-137 or Sr-90 from all sources/facilities using either the ESER or BEA MDAs. The network was less effective at detecting releases of Pu-239. Maximum detection frequencies for Pu-239 using ESER MDAs ranged from 27.4 to 100% for onsite samplers and 3 to 80% for offsite samplers. Using BEA MDAs, the maximum detection frequencies for Pu-239 ranged from 2.1 to 100% for onsite samplers and 0 to 5.9% for offsite samplers. The only release that was not detected by any of the samplers under any conditions was a release of Pu-239 from the Idaho Nuclear Technology and Engineering Center main stack (CPP-708). The methodology described in this report could be used to improve sampler placement and detection frequency, provided clear performance objectives are defined.« less
  • The ever-increasing demand for energy has focused the nation's attention on the coal deposits in the Northern Great Plains area which encompasses parts of the states of Montana, North Dakota, South Dakota, and Wyoming. Plans to develop these vast coal reserves are now being made. The importance of these coal deposits toward satisfying the nation's thirst for energy is obvious. It is equally important that activities associated with the mining and handling of coal not result in significant deterioration of the environment. The environmental impact of proposed developments must be carefully analyzed. In order to provide the basic data necessarymore » to assess impacts upon future air quality, it is necessary to determine the current air quality of the affected area. The purpose of this report is to describe the installation phase and to give a comprehensive description of a network of 22 monitoring stations located throughout the region designated as the Northern Great Plains area.« less
  • This ambient air monitoring program was initiated with the overall objective of establishing an air quality base line for the Four Corners area of Arizona, Colorado, New Mexico, and Utah. The base line will be used in assessing the impact of the development of coal deposits and the operation of large, coal-fired, electrical generating plants in the Four Corners area. A network of 29 monitoring stations was established to obtain data concerning the air quality in a predominantly rural area covering a multistate region. Results are evaluated in terms of the total suspended particulates present in the ambient air atmore » each of the 29 monitoring stations on a seasonal basis from the winter season of 1975-1976 through the winter season of 1976-1977. Results also are evaluated in terms of the validity of the sampling and analytical procedures.« less
  • Airnet, LANL's ambient air monitoring for radionuclides, is described both historically as well as the drivers involved in the need for updating the program.
  • This report presents an evaluation of a hypothetical INL Site monitoring network and the existing INL air monitoring network using frequency of detection methods. The hypothetical network was designed to address the requirement in 40 CFR Part 61, Subpart H (2006) that “emissions of radionuclides to ambient air from U.S. DOE facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent exceeding 10 mrem/year.” To meet the requirement for monitoring only, “radionuclide releases that would result in an effective dose of 10% of the standard shall bemore » readily detectable and distinguishable from background.” Thus, the hypothetical network consists of air samplers placed at residence locations that surround INL and at other locations where onsite livestock grazing takes place. Two exposure scenarios were used in this evaluation: a resident scenario and a shepherd/rancher scenario. The resident was assumed to be continuously present at their residence while the shepherd/rancher was assumed to be present 24-hours at a fixed location on the grazing allotment. Important radionuclides were identified from annual INL radionuclide National Emission Standards for Hazardous Pollutants reports. Important radionuclides were defined as those that potentially contribute 1% or greater to the annual total dose at the radionuclide National Emission Standards for Hazardous Pollutants maximally exposed individual location and include H-3, Am-241, Pu-238, Pu 239, Cs-137, Sr-90, and I-131. For this evaluation, the network performance objective was set at achieving a frequency of detection greater than or equal to 95%. Results indicated that the hypothetical network for the resident scenario met all performance objectives for H-3 and I-131 and most performance objectives for Cs-137 and Sr-90. However, all actinides failed to meet the performance objectives for most sources. The shepherd/rancher scenario showed that air samplers placed around the facilities every 22.5 degrees were very effective in detecting releases, but this arrangement is not practical or cost effective. However, it was shown that a few air samplers placed in the prevailing wind direction around each facility could achieve the performance objective of a frequency of detection greater than or equal to 95% for the shepherd/rancher scenario. The results also indicate some of the current sampler locations have little or no impact on the network frequency of detection and could be removed from the network with no appreciable deterioration of performance. Results show that with some slight modifications to the existing network (i.e., additional samplers added north and south of the Materials and Fuels Complex and ineffective samplers removed), the network would achieve performance objectives for all sources for both the resident and shepherd/rancher scenario.« less