skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements

Abstract

This report provides a detailed description of FY15 test result corrections/analysis based on the FY16 Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) test program methodology update used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal transportation conditions. The CIRFT consists of a U-frame testing setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages to a universal testing machine. The curvature of rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are used and clamped to the side connecting plates of the U-frame to capture the deformation of the rod. The contact-based measurement, or three-LVDT-based curvature measurement system, on SNF rods has been proven to be quite reliable in CIRFT testing. However, how the LVDT head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. It has been demonstrated that the contact/curvature issues can be corrected by using a correction on the sensor spacing. The sensor spacing defines the separation of the three LVDT probes and is a critical quantity in calculating the rod curvature once themore » deflections are obtained. The sensor spacing correction can be determined by using chisel-type probes. The method has been critically examined this year and has been shown to be difficult to implement in a hot cell environment, and thus cannot be implemented effectively. A correction based on the proposed equivalent gauge-length has the required flexibility and accuracy and can be appropriately used as a correction factor. The correction method based on the equivalent gauge length has been successfully demonstrated in CIRFT data analysis for the dynamic tests conducted on Limerick (LMK) (17 tests), North Anna (NA) (6 tests), and Catawba mixed oxide (MOX) (10 tests) SNF samples. These CIRFT tests were completed in FY14 and FY15. Specifically, the data sets obtained from measurement and monitoring were processed and analyzed. The fatigue life of rods has been characterized in terms of moment, curvature, and equivalent stress and strain..« less

Authors:
 [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Temperature Materials Lab. (HTML)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1287034
Report Number(s):
ORNL/TM-2016/276
AF5865010; NEAF346; ORNL/SR-2016/276; TRN: US1601678
DOE Contract Number:
AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; BENDING; DATA ANALYSIS; FUEL RODS; CORRECTIONS; SPENT FUELS; TESTING; FATIGUE; LENGTH; FLEXIBILITY; SENSORS; PROBES; ACCURACY; STRAINS; STRESSES; TEST FACILITIES; MEASURING METHODS; MECHANICAL VIBRATIONS; LAND TRANSPORT; spent nuclear fuel; fuel transport; fuel vibration integrity; reversible bending fatigue test

Citation Formats

Wang, Jy-An John, and Wang, Hong. FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements. United States: N. p., 2016. Web. doi:10.2172/1287034.
Wang, Jy-An John, & Wang, Hong. FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements. United States. doi:10.2172/1287034.
Wang, Jy-An John, and Wang, Hong. 2016. "FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements". United States. doi:10.2172/1287034. https://www.osti.gov/servlets/purl/1287034.
@article{osti_1287034,
title = {FY 2016 Status Report: CIRFT Testing Data Analyses and Updated Curvature Measurements},
author = {Wang, Jy-An John and Wang, Hong},
abstractNote = {This report provides a detailed description of FY15 test result corrections/analysis based on the FY16 Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) test program methodology update used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal transportation conditions. The CIRFT consists of a U-frame testing setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages to a universal testing machine. The curvature of rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are used and clamped to the side connecting plates of the U-frame to capture the deformation of the rod. The contact-based measurement, or three-LVDT-based curvature measurement system, on SNF rods has been proven to be quite reliable in CIRFT testing. However, how the LVDT head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. It has been demonstrated that the contact/curvature issues can be corrected by using a correction on the sensor spacing. The sensor spacing defines the separation of the three LVDT probes and is a critical quantity in calculating the rod curvature once the deflections are obtained. The sensor spacing correction can be determined by using chisel-type probes. The method has been critically examined this year and has been shown to be difficult to implement in a hot cell environment, and thus cannot be implemented effectively. A correction based on the proposed equivalent gauge-length has the required flexibility and accuracy and can be appropriately used as a correction factor. The correction method based on the equivalent gauge length has been successfully demonstrated in CIRFT data analysis for the dynamic tests conducted on Limerick (LMK) (17 tests), North Anna (NA) (6 tests), and Catawba mixed oxide (MOX) (10 tests) SNF samples. These CIRFT tests were completed in FY14 and FY15. Specifically, the data sets obtained from measurement and monitoring were processed and analyzed. The fatigue life of rods has been characterized in terms of moment, curvature, and equivalent stress and strain..},
doi = {10.2172/1287034},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Technical Report:

Save / Share:
  • This report provides a detailed description of the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) testing conducted on spent nuclear fuel (SNF) rods in FY 2016, including hydride reorientation test results. Contact-based measurement, or three-LVDT-based curvature measurement, of SNF rods has proven to be quite reliable in CIRFT testing. However, how the linear variable differential transformer (LVDT) head contacts the SNF rod may have a significant effect on the curvature measurement, depending on the magnitude and direction of rod curvature. To correct such contact/curvature issues, sensor spacing, defined as the amount of separation between the three LVDT probes, is a criticalmore » measurement that can be used to calculate rod curvature once the deflections are obtained. Recently developed CIRFT data analyses procedures were integrated into FY 2016 CIRFT testing results for the curvature measurements. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The equivalent stress plot collapsed the data points from all of the SNFs into a single zone. A detailed examination revealed that, at same stress level, fatigue lives display a descending order as follows: H. B. Robinson Nuclear Power Station (HBR), Limerick Nuclear Power Station (LMK), mixed uranium-plutonium oxide (MOX). If looking at the strain, then LMK fuel has a slightly longer fatigue life than HBR fuel, but the difference is subtle. The knee point of endurance limit in the curve of moment and curvature or equivalent quantities is more clearly defined for LMK and HBR fuels. The treatment affects the fatigue life of specimens. Both a drop of 12 in. and radial hydride treatment (RHT) have a negative impact on fatigue life. The effect of thermal annealing on MOX fuel rods was relatively small at higher amplitude but became significant at low amplitude of moment. Thermal annealing tended to extend the fatigue life of MOX fuel rod specimens. However, for HR4 testing, the thermal annealing treatment showed a negative impact on the fatigue life of the HBR rod.« less
  • The first portion of this report provides a detailed description of fiscal year (FY) 2015 test result corrections and analysis updates based on FY 2016 updates to the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) program methodology, which is used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal conditions of transport (NCT). The CIRFT consists of a U-frame test setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages connecting to a universal testing machine. The curvature SNF rod bending is obtained through a three-point deflection measurementmore » method. Three linear variable differential transformers (LVDTs) are clamped to the side connecting plates of the U-frame and used to capture deformation of the rod. The second portion of this report provides the latest CIRFT data, including data for the hydride reorientation test. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The equivalent stress plot collapsed the data points from all of the SNF samples into a single zone. A detailed examination revealed that, at the same stress level, fatigue lives display a descending order as follows: H. B. Robinson Nuclear Power Station (HBR), LMK, and mixed uranium-plutonium oxide (MOX). Just looking at the strain, LMK fuel has a slightly longer fatigue life than HBR fuel, but the difference is subtle. The third portion of this report provides finite element analysis (FEA) dynamic deformation simulation of SNF assemblies . In a horizontal layout under NCT, the fuel assembly’s skeleton, which is formed by guide tubes and spacer grids, is the primary load bearing apparatus carrying and transferring vibration loads within an SNF assembly. These vibration loads include interaction forces between the SNF assembly and the canister basket walls. Therefore, the integrity of the guide tubes and spacer grids critically affects the vibration intensity of the fuel assembly during transport and must be considered when developing the multipurpose purpose canister (MPC) design for safe SNF transport.« less
  • Since the CIRFT tests reported in NUREG-7198 were generated, a number of factors that influence the recorded curvature measurement data were identified. In 2016, a data reanalysis task was undertaken to implement the lessons learned. This letter report provides the revised results of previous CIRFT tests, after implementing the following data reanalysis procedures: (A) experimental data smoothing and LVDT reset, (B) LVDT probe contact and sensor spacing correction for curvature data, and (C) LVDT probe dynamic vibration adjustment procedure development.
  • The objective of this project is to perform a systematic study of SNF/UNF (spent nuclear fuel/or used nuclear fuel) integrity under simulated transportation environments by using hot cell testing technology developed recently at Oak Ridge National Laboratory (ORNL), CIRFT (Cyclic Integrated Reversible-Bending Fatigue Tester). Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmarking tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. With support from the US Department of Energy and the NRC, CIRFT testing has been continued. The CIRFT testing was conducted on three HBR rods (R3, R4,more » and R5), with two specimens failed and one specimen un-failed. The total number of cycles in the test of un-failed specimens went over 2.23 107; the test was stopped as because the specimen did not show any sign of failure. The data analysis on all the HBR SNF rods demonstrated that it is necessary to characterize the fatigue life of used fuel rods in terms of both the curvature amplitude and the maximum of absolute of curvature extremes. The latter is significant because the maxima of extremes signify the maximum of tensile stress of the outer fiber of the bending rod. So far, a large variety of hydrogen contents has been covered in the CIRFT testing on HBR rods. It has been shown that the load amplitude is the dominant factor that controls the lifetime of bending rods, but the hydrogen content also has an important effect on the lifetime attained, according to the load range tested.« less