skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing

Abstract

Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H-2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Therrnodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arrninicenantes (OP8) represented ≥ 1% ofmore » the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. In conclusion, this study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus spp.« less

Authors:
 [1];  [2];  [2];  [1];  [3];  [2];  [4]
  1. Pennsylvania State Univ., University Park, PA (United States). Dept. of Biochemistry and Molecular Biology
  2. Montana State Univ., Bozeman, MT (United States). Dept. of Land Resources and Environmental Sciences
  3. Montana State Univ., Bozeman, MT (United States). Dept. of Land Resources and Environmental Sciences; Univ. of Minnesota, Saint Paul, MN (United States). Agricultural Research Service, United States Dept. of Agriculture
  4. Pennsylvania State Univ., University Park, PA (United States). Dept. of Biochemistry and Molecular Biology; Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1286006
Grant/Contract Number:
FG02-94ER20137; AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Frontiers in Microbiology
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 1664-302X
Publisher:
Frontiers Research Foundation
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; hot spring; microbial community; microbial diversity; extreme environments; phototrophic bacteria; yellowstone-national-park; candidatus chloracidobacterium thermophilum; gradient gel-electrophoresis; operational taxonomic units; algal-bacterial mats; alkaline hot-springs; cyanobacterial mat; sp-nov.; synechococcus populations; molecular signatures

Citation Formats

Thiel, Vera, Wood, Jason M., Olsen, Millie T., Tank, Marcus, Klatt, Christian G., Ward, David M., and Bryant, Donald A.. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing. United States: N. p., 2016. Web. doi:10.3389/fmicb.2016.00919.
Thiel, Vera, Wood, Jason M., Olsen, Millie T., Tank, Marcus, Klatt, Christian G., Ward, David M., & Bryant, Donald A.. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing. United States. doi:10.3389/fmicb.2016.00919.
Thiel, Vera, Wood, Jason M., Olsen, Millie T., Tank, Marcus, Klatt, Christian G., Ward, David M., and Bryant, Donald A.. 2016. "The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing". United States. doi:10.3389/fmicb.2016.00919. https://www.osti.gov/servlets/purl/1286006.
@article{osti_1286006,
title = {The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing},
author = {Thiel, Vera and Wood, Jason M. and Olsen, Millie T. and Tank, Marcus and Klatt, Christian G. and Ward, David M. and Bryant, Donald A.},
abstractNote = {Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H-2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Therrnodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arrninicenantes (OP8) represented ≥ 1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. In conclusion, this study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus spp.},
doi = {10.3389/fmicb.2016.00919},
journal = {Frontiers in Microbiology},
number = ,
volume = 7,
place = {United States},
year = 2016,
month = 6
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungalmore » community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.« less
  • The bacterial diversity associated with citrus leaf midribs was characterized 1 from citrus groves that contained the Huanglongbing (HLB) pathogen, which has yet to be cultivated in vitro. We employed a combination of high-density phylogenetic 16S rDNA microarray and 16S rDNA clone library sequencing to determine the microbial community composition of symptomatic and asymptomatic citrus midribs. Our results revealed that citrus leaf midribs can support a diversity of microbes. PhyloChip analysis indicated that 47 orders of bacteria from 15 phyla were present in the citrus leaf midribs while 20 orders from phyla were observed with the cloning and sequencing method.more » PhyloChip arrays indicated that nine taxa were significantly more abundant in symptomatic midribs compared to asymptomatic midribs. Candidatus Liberibacter asiaticus (Las) was detected at a very low level in asymptomatic plants, but was over 200 times more abundant in symptomatic plants. The PhyloChip analysis was further verified by sequencing 16S rDNA clone libraries, which indicated the dominance of Las in symptomatic leaves. These data implicate Las as the pathogen responsible for HLB disease. Citrus is the most important commercial fruit crop in Florida. In recent years, citrus Huanglongbing (HLB), also called citrus greening, has severely affected Florida's citrus production and hence has drawn an enormous amount of attention. HLB is one of the most devastating diseases of citrus (6,13), characterized by blotchy mottling with green islands on leaves, as well as stunting, fruit decline, and small, lopsided fruits with poor coloration. The disease tends to be associated with a phloem-limited fastidious {alpha}-proteobacterium given a provisional Candidatus status (Candidatus Liberobacter spp. later changed to Candidatus Liberibacter spp.) in nomenclature (18,25,34). Previous studies indicate that HLB infection causes disorder in the phloem and severely impairs the translocation of assimilates in host plants (5,27,40). Tatineni and colleagues discovered that the HLB bacteria were unevenly distributed in phloem of bark tissue, vascular tissue of the leaf midrib, roots, and different floral and fruit parts (43). Unsuccessful attempts in culturing the pathogen are notably hampering efforts to understand its biology and pathogenesis mechanism. Using a modified Koch's Postulates approach, Jagoueix and colleagues were able to re-infect periwinkle plants from a mixed microbial community harvested from HLB diseased plants (25). Emergence of the disease in otherwise healthy plants led to the conclusion that HLB was associated with Candidatus Liberibacter sp. based on its 16S rDNA sequence (18,25). Currently, three species of the pathogen are recognized from trees with HLB disease based on 16S rDNA sequence: Ca. Liberibacter asiaticus (Las), Ca. Liberibacter africanus (Laf), and Ca. Liberibacter americanus (Lam); Las is the most prevalent species among HLB diseased trees (5,12,18,25,44). Las is naturally transmitted to citrus by the psyllid, Diaphorina citri Kuwayama, and can be artificially transmitted by grafting from citrus to citrus and dodder (Cuscuta campestris) to periwinkle (Catharanthus roseus) or tobacco (Nicotiana tabacum Xanthi) (5). Based on current research regarding the associations of Liberibacter in planta there is not enough evidence to implicate Liberibacter as the definitive causal agent of HLB disease due to its resistance to cultivation in vitro. It is possible that HLB disease may be the result of complex etiology where Liberibacter interacts with other endophytic bacteria. However, there is not enough evidence regarding its association(s) in planta to make this conclusion, nor is it known whether associated microbial communities play a role in expression of pathogenic traits. The main objective of the study was to test the hypothesis that other bacteria besides Ca. Liberibacter spp. are associated with citrus greening disease. The differences between the relative abundance, species richness and phylogenetic diversity of the microbial communities associated with the leaf midribs of HLB symptomatic and asymptomatic citrus trees were investigated using high-density 16S rDNA microarray PhyloChip and 16S rRNA gene clone library methods.« less
  • Technologies for massively parallel sequencing are revolutionizing microbial ecology and are vastly increasing the scale of ribosomal RNA (rRNA) gene studies. Although pyrosequencing has increased the breadth and depth of possible rRNA gene sampling, one drawback is that the number of reads obtained per sample is difficult to control. Pyrosequencing libraries typically vary widely in the number of sequences per sample, even within individual studies, and there is a need to revisit the behaviour of richness estimators and diversity indices with variable gene sequence library sizes. Multiple reports and review papers have demonstrated the bias in non-parametric richness estimators (e.g.more » Chao1 and ACE) and diversity indices when using clone libraries. However, we found that biased community comparisons are accumulating in the literature. Here we demonstrate the effects of sample size on Chao1, ACE, CatchAll, Shannon, Chao-Shen and Simpson's estimations specifically using pyrosequencing libraries. The need to equalize the number of reads being compared across libraries is reiterated, and investigators are directed towards available tools for making unbiased diversity comparisons.« less