skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Fe2(MoO4)3 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1285781· OSTI ID:1285781

Fe2(MoO4)3 crystallizes in the monoclinic P2_1 space group. The structure is three-dimensional. there are twelve inequivalent Mo6+ sites. In the first Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 14–34°. There is three shorter (1.79 Å) and one longer (1.80 Å) Mo–O bond length. In the second Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 21–42°. There is three shorter (1.79 Å) and one longer (1.80 Å) Mo–O bond length. In the third Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 13–44°. There is one shorter (1.79 Å) and three longer (1.80 Å) Mo–O bond length. In the fourth Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 13–44°. There is three shorter (1.79 Å) and one longer (1.80 Å) Mo–O bond length. In the fifth Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 12–41°. There is two shorter (1.79 Å) and two longer (1.80 Å) Mo–O bond length. In the sixth Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 20–41°. There is two shorter (1.79 Å) and two longer (1.80 Å) Mo–O bond length. In the seventh Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 9–39°. All Mo–O bond lengths are 1.79 Å. In the eighth Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 21–45°. There is two shorter (1.79 Å) and two longer (1.80 Å) Mo–O bond length. In the ninth Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 24–46°. There is three shorter (1.79 Å) and one longer (1.80 Å) Mo–O bond length. In the tenth Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 14–37°. There are a spread of Mo–O bond distances ranging from 1.78–1.80 Å. In the eleventh Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 18–39°. There are a spread of Mo–O bond distances ranging from 1.78–1.80 Å. In the twelfth Mo6+ site, Mo6+ is bonded to four O2- atoms to form MoO4 tetrahedra that share corners with four FeO6 octahedra. The corner-sharing octahedra tilt angles range from 14–34°. There is one shorter (1.79 Å) and three longer (1.80 Å) Mo–O bond length. There are eight inequivalent Fe3+ sites. In the first Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six MoO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 2.01–2.05 Å. In the second Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six MoO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.98–2.04 Å. In the third Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six MoO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.98–2.05 Å. In the fourth Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six MoO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 2.00–2.05 Å. In the fifth Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six MoO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.98–2.04 Å. In the sixth Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six MoO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 1.98–2.02 Å. In the seventh Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six MoO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 2.00–2.04 Å. In the eighth Fe3+ site, Fe3+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six MoO4 tetrahedra. There are a spread of Fe–O bond distances ranging from 2.00–2.05 Å. There are forty-eight inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the third O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the fourth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the fifth O2- site, O2- is bonded in a linear geometry to one Mo6+ and one Fe3+ atom. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the tenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the eleventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the twelfth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the fourteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the fifteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the sixteenth O2- site, O2- is bonded in a linear geometry to one Mo6+ and one Fe3+ atom. In the seventeenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the eighteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the nineteenth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the twentieth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the twenty-first O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the twenty-second O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the twenty-third O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the twenty-fourth O2- site, O2- is bonded in a linear geometry to one Mo6+ and one Fe3+ atom. In the twenty-fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the twenty-sixth O2- site, O2- is bonded in a distorted bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the twenty-seventh O2- site, O2- is bonded in a linear geometry to one Mo6+ and one Fe3+ atom. In the twenty-eighth O2- site, O2- is bonded in a linear geometry to one Mo6+ and one Fe3+ atom. In the twenty-ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirtieth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirty-first O2- site, O2- is bonded in a distorted bent 120 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirty-second O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirty-third O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirty-fourth O2- site, O2- is bonded in a linear geometry to one Mo6+ and one Fe3+ atom. In the thirty-fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirty-sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirty-seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirty-eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the thirty-ninth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the fortieth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the forty-first O2- site, O2- is bonded in a linear geometry to one Mo6+ and one Fe3+ atom. In the forty-second O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the forty-third O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the forty-fourth O2- site, O2- is bonded in a linear geometry to one Mo6+ and one Fe3+ atom. In the forty-fifth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the forty-sixth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the forty-seventh O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom. In the forty-eighth O2- site, O2- is bonded in a bent 150 degrees geometry to one Mo6+ and one Fe3+ atom.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1285781
Report Number(s):
mp-704851
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on Fe2(MoO4)3 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1285781

Materials Data on V2Fe4Mo3O20 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1285781

Materials Data on K3FeMo4O15 by Materials Project
Dataset · Sat Jan 12 00:00:00 EST 2019 · OSTI ID:1285781