skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on AgSbO3 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1283243· OSTI ID:1283243

AgSbO3 crystallizes in the triclinic P1 space group. The structure is three-dimensional. there are twelve inequivalent Ag1+ sites. In the first Ag1+ site, Ag1+ is bonded in a 3-coordinate geometry to three O2- atoms. There are a spread of Ag–O bond distances ranging from 2.41–2.50 Å. In the second Ag1+ site, Ag1+ is bonded in a 3-coordinate geometry to three O2- atoms. There are a spread of Ag–O bond distances ranging from 2.36–2.53 Å. In the third Ag1+ site, Ag1+ is bonded in a single-bond geometry to one O2- atom. The Ag–O bond length is 2.28 Å. In the fourth Ag1+ site, Ag1+ is bonded in a 3-coordinate geometry to six O2- atoms. There are a spread of Ag–O bond distances ranging from 2.45–2.97 Å. In the fifth Ag1+ site, Ag1+ is bonded in a 3-coordinate geometry to four O2- atoms. There are a spread of Ag–O bond distances ranging from 2.35–2.62 Å. In the sixth Ag1+ site, Ag1+ is bonded in a 2-coordinate geometry to five O2- atoms. There are a spread of Ag–O bond distances ranging from 2.38–2.91 Å. In the seventh Ag1+ site, Ag1+ is bonded in a 3-coordinate geometry to three O2- atoms. There are a spread of Ag–O bond distances ranging from 2.37–2.48 Å. In the eighth Ag1+ site, Ag1+ is bonded in a 3-coordinate geometry to five O2- atoms. There are a spread of Ag–O bond distances ranging from 2.39–2.78 Å. In the ninth Ag1+ site, Ag1+ is bonded in a distorted single-bond geometry to one O2- atom. The Ag–O bond length is 2.21 Å. In the tenth Ag1+ site, Ag1+ is bonded in a 3-coordinate geometry to three O2- atoms. There are a spread of Ag–O bond distances ranging from 2.41–2.47 Å. In the eleventh Ag1+ site, Ag1+ is bonded in a 3-coordinate geometry to three O2- atoms. There are a spread of Ag–O bond distances ranging from 2.35–2.49 Å. In the twelfth Ag1+ site, Ag1+ is bonded in a 6-coordinate geometry to five O2- atoms. There are a spread of Ag–O bond distances ranging from 2.51–2.72 Å. There are twelve inequivalent Sb5+ sites. In the first Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 53–56°. There are a spread of Sb–O bond distances ranging from 1.98–2.06 Å. In the second Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 53–57°. There are a spread of Sb–O bond distances ranging from 1.98–2.06 Å. In the third Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 55–57°. There are a spread of Sb–O bond distances ranging from 1.98–2.06 Å. In the fourth Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 53–57°. There are a spread of Sb–O bond distances ranging from 1.98–2.05 Å. In the fifth Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 53–55°. There are a spread of Sb–O bond distances ranging from 1.97–2.07 Å. In the sixth Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 52–58°. There are a spread of Sb–O bond distances ranging from 1.99–2.06 Å. In the seventh Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 53–55°. There are a spread of Sb–O bond distances ranging from 1.96–2.08 Å. In the eighth Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 52–57°. There are a spread of Sb–O bond distances ranging from 1.97–2.05 Å. In the ninth Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 56–58°. There are a spread of Sb–O bond distances ranging from 2.00–2.03 Å. In the tenth Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 53–57°. There are a spread of Sb–O bond distances ranging from 1.99–2.05 Å. In the eleventh Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 55–58°. There are a spread of Sb–O bond distances ranging from 1.96–2.05 Å. In the twelfth Sb5+ site, Sb5+ is bonded to six O2- atoms to form a mixture of edge and corner-sharing SbO6 octahedra. The corner-sharing octahedra tilt angles range from 55–57°. There are a spread of Sb–O bond distances ranging from 1.99–2.06 Å. There are thirty-six inequivalent O2- sites. In the first O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Ag1+ and two Sb5+ atoms. In the second O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Ag1+ and two Sb5+ atoms. In the third O2- site, O2- is bonded in a 3-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the fourth O2- site, O2- is bonded in a 4-coordinate geometry to two Ag1+ and two Sb5+ atoms. In the fifth O2- site, O2- is bonded in a 3-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the sixth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Ag1+ and two Sb5+ atoms. In the seventh O2- site, O2- is bonded in a 2-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the eighth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Ag1+ and two Sb5+ atoms. In the ninth O2- site, O2- is bonded in a 3-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the tenth O2- site, O2- is bonded in a 2-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the eleventh O2- site, O2- is bonded in a distorted water-like geometry to two Ag1+ and two Sb5+ atoms. In the twelfth O2- site, O2- is bonded in a distorted T-shaped geometry to one Ag1+ and two Sb5+ atoms. In the thirteenth O2- site, O2- is bonded in a 3-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the fourteenth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Ag1+ and two Sb5+ atoms. In the fifteenth O2- site, O2- is bonded to two Ag1+ and two Sb5+ atoms to form distorted corner-sharing OAg2Sb2 tetrahedra. In the sixteenth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Ag1+ and two Sb5+ atoms. In the seventeenth O2- site, O2- is bonded in a 3-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the eighteenth O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Ag1+ and two Sb5+ atoms. In the nineteenth O2- site, O2- is bonded in a 2-coordinate geometry to two Ag1+ and two Sb5+ atoms. In the twentieth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two Sb5+ atoms. In the twenty-first O2- site, O2- is bonded in a 3-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the twenty-second O2- site, O2- is bonded in a 3-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the twenty-third O2- site, O2- is bonded in a water-like geometry to two Sb5+ atoms. In the twenty-fourth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Ag1+ and two Sb5+ atoms. In the twenty-fifth O2- site, O2- is bonded in a distorted water-like geometry to one Ag1+ and two Sb5+ atoms. In the twenty-sixth O2- site, O2- is bonded in a distorted water-like geometry to one Ag1+ and two Sb5+ atoms. In the twenty-seventh O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Ag1+ and two Sb5+ atoms. In the twenty-eighth O2- site, O2- is bonded in a 2-coordinate geometry to two Ag1+ and two Sb5+ atoms. In the twenty-ninth O2- site, O2- is bonded to two Ag1+ and two Sb5+ atoms to form distorted corner-sharing OAg2Sb2 tetrahedra. In the thirtieth O2- site, O2- is bonded in a distorted trigonal planar geometry to one Ag1+ and two Sb5+ atoms. In the thirty-first O2- site, O2- is bonded in a distorted trigonal non-coplanar geometry to one Ag1+ and two Sb5+ atoms. In the thirty-second O2- site, O2- is bonded in a 4-coordinate geometry to two Ag1+ and two Sb5+ atoms. In the thirty-third O2- site, O2- is bonded in a 2-coordinate geometry to two Ag1+ and two Sb5+ atoms. In the thirty-fourth O2- site, O2- is bonded in a 3-coordinate geometry to one Ag1+ and two Sb5+ atoms. In the thirty-fifth O2- site, O2- is bonded in a 2-coordinate geometry to two Ag1+ and two Sb5+ atoms. In the thirty-sixth O2- site, O2- is bonded in a distorted bent 120 degrees geometry to two Sb5+ atoms.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1283243
Report Number(s):
mp-677054
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on LiSbPO5 by Materials Project
Dataset · Sat May 02 00:00:00 EDT 2020 · OSTI ID:1283243

Materials Data on Ba3LiTi5(SbO7)3 by Materials Project
Dataset · Thu May 11 00:00:00 EDT 2017 · OSTI ID:1283243

Materials Data on Rb5TiSb7O22 by Materials Project
Dataset · Thu Apr 30 00:00:00 EDT 2020 · OSTI ID:1283243