skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and Implementation of Geothermal Energy Systems at West Chester University

Abstract

West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.

Authors:
 [1]
  1. West Chester Univ., West Chester (PA)
Publication Date:
Research Org.:
West Chester Univ., West Chester (PA)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1283104
Report Number(s):
DE-EE0004348
DOE Contract Number:
EE0004348
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
15 GEOTHERMAL ENERGY; geothermal, carbon footprint, renewable energy, geo-exchange system

Citation Formats

Lewis, James. Design and Implementation of Geothermal Energy Systems at West Chester University. United States: N. p., 2016. Web. doi:10.2172/1283104.
Lewis, James. Design and Implementation of Geothermal Energy Systems at West Chester University. United States. doi:10.2172/1283104.
Lewis, James. 2016. "Design and Implementation of Geothermal Energy Systems at West Chester University". United States. doi:10.2172/1283104. https://www.osti.gov/servlets/purl/1283104.
@article{osti_1283104,
title = {Design and Implementation of Geothermal Energy Systems at West Chester University},
author = {Lewis, James},
abstractNote = {West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.},
doi = {10.2172/1283104},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Technical Report:

Save / Share:
  • West Chester University is launching a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution is in the process of designing and implementing this project to build well fields, a pumping station and install connecting piping to provide the geothermal heat/cooling source for campus buildings. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologiesmore » that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply. For this grant, WCU will extend piping for its geo-exchange system. The work involves excavation of a trench approximately 8 feet wide and 10-12 feet deep located about 30 feet north of the curb along the north side of West Rosedale for a distance of approximately 1,300 feet. The trench will then turn north for the remaining distance (60 feet) to connect into the mechanical room in the basement of the Francis Harvey Green Library. This project will include crossing South Church Street near its intersection with West Rosedale, which will involve coordination with the Borough of West Chester. After installation of the piping, the trench will be backfilled and the surface restored to grass as it is now. Because the trench will run along a heavily-used portion of the campus, it will be accomplished in sections to minimize disruption to the campus as much as possible.« less
  • West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Departmentmore » of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less
  • The Bell Telephone Company of Pennsylvania office building has 2112 ft/sup 2/ of flat-plate collectors and a 4600 gallon steel tank for heat storage. During the period reported the system had a 46% solar fraction and a coefficient of performance of 30. (MHR)
  • This report describes the technologies likely to be used for development of geothermal resources in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming). It provides information on input materials and labor requirements, outputs, residuals, energy requirements, economic costs, and resource specific state and federal laws and regulations.
  • Eleven implementation plans were prepared. They represent some 21 reservoir-site developments and 48 geothermal power plant developments. The plans consist of three integrated elements: (1) a bar-chart schedule that depicts interdependencies among activities and shows significant milestones on the path from initial exploration to power on-line, (2) task descriptions, and (3) the responsible performers. During the preparation of the implementation plans, the tasks required for resource development at each KGRA were defined on a generalized work breakdown structure (WBS) diagram. A generalized WBS dictionary (task descriptions) was also compiled. In addition, a specific WBS for each KGRA was prepared inmore » a tabular and indented format. The tasks formed the basis for the schedular activities. Institutional responsibilities, based upon the WBS, were identified and are also shown on the tabular WBS. In this manner, implementation plans evolved whose schedular, task, and responsibility elements were integrated with one another. In order to provide logically consistent time estimates, and a reasonable basis for comparison, schedule modules were developed for some recurring activities which are essentially common to all KGRAs. In the preparation of multiple plant schedules for a given KGRA, the interactive effects of power development on the ancillary resources of the area were considered so that interfaces and constraining situations would be identified. Within Imperial County, this process was taken one step further to include the influence that development at the several close-lying KGRAs would have upon one another. A set of recommendations for the accelerated development of geothermal energy resources was prepared and the potential implementors were suggested.« less