skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Maintainable substrate carrier for electroplating

Abstract

One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

Inventors:
; ; ; ; ; ;
Publication Date:
Research Org.:
SunPower Corporation, San Jose, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1279689
Patent Number(s):
RE46,088
Application Number:
14/704,647
Assignee:
SunPower Corporation (San Jose, CA) GFO
DOE Contract Number:
FC36-07GO17043
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 May 05
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Chen, Chen-An, Abas, Emmanuel Chua, Divino, Edmundo Anida, Ermita, Jake Randal G., Capulong, Jose Francisco S., Castillo, Arnold Villamor, and Ma, Diana Xiaobing. Maintainable substrate carrier for electroplating. United States: N. p., 2016. Web.
Chen, Chen-An, Abas, Emmanuel Chua, Divino, Edmundo Anida, Ermita, Jake Randal G., Capulong, Jose Francisco S., Castillo, Arnold Villamor, & Ma, Diana Xiaobing. Maintainable substrate carrier for electroplating. United States.
Chen, Chen-An, Abas, Emmanuel Chua, Divino, Edmundo Anida, Ermita, Jake Randal G., Capulong, Jose Francisco S., Castillo, Arnold Villamor, and Ma, Diana Xiaobing. Tue . "Maintainable substrate carrier for electroplating". United States. doi:. https://www.osti.gov/servlets/purl/1279689.
@article{osti_1279689,
title = {Maintainable substrate carrier for electroplating},
author = {Chen, Chen-An and Abas, Emmanuel Chua and Divino, Edmundo Anida and Ermita, Jake Randal G. and Capulong, Jose Francisco S. and Castillo, Arnold Villamor and Ma, Diana Xiaobing},
abstractNote = {One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Aug 02 00:00:00 EDT 2016},
month = {Tue Aug 02 00:00:00 EDT 2016}
}

Patent:

Save / Share:
  • One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.
  • One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
  • One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features aremore » also disclosed.« less
  • One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features aremore » also disclosed.« less
  • A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article includingmore » a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.« less