skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Large resistivity modulation in mixed-phase metallic systems

Abstract

Giant physical responses were discovered, in numerous systems, when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. Finally, the observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.

Authors:
 [1];  [2];  [3];  [1];  [1];  [1];  [2];  [4];  [1];  [1];  [5];  [2];  [1];  [5];  [4];  [6];  [7]
  1. Univ. of California, Berkeley, CA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Cornell Univ., Ithaca, NY (United States)
  4. ETH Zurich (Switzerland)
  5. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  6. Cornell Univ., Ithaca, NY (United States); Kavli Inst. at Cornell for Nanoscale Science, Ithaca, NY (United States)
  7. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1279414
Grant/Contract Number:  
AC05-00OR22725; EEC-1160504; DMR-1120296; AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Lee, Yeonbae, Liu, Z. Q., Heron, J. T., Clarkson, J. D., Hong, J., Ko, C., Biegalski, M. D., Aschauer, U., Hsu, S. L., Nowakowski, M. E., Wu, J., Christen, H. M., Salahuddin, S., Bokor, J. B., Spaldin, N. A., Schlom, D. G., and Ramesh, R. Large resistivity modulation in mixed-phase metallic systems. United States: N. p., 2015. Web. doi:10.1038/ncomms6959.
Lee, Yeonbae, Liu, Z. Q., Heron, J. T., Clarkson, J. D., Hong, J., Ko, C., Biegalski, M. D., Aschauer, U., Hsu, S. L., Nowakowski, M. E., Wu, J., Christen, H. M., Salahuddin, S., Bokor, J. B., Spaldin, N. A., Schlom, D. G., & Ramesh, R. Large resistivity modulation in mixed-phase metallic systems. United States. doi:10.1038/ncomms6959.
Lee, Yeonbae, Liu, Z. Q., Heron, J. T., Clarkson, J. D., Hong, J., Ko, C., Biegalski, M. D., Aschauer, U., Hsu, S. L., Nowakowski, M. E., Wu, J., Christen, H. M., Salahuddin, S., Bokor, J. B., Spaldin, N. A., Schlom, D. G., and Ramesh, R. Wed . "Large resistivity modulation in mixed-phase metallic systems". United States. doi:10.1038/ncomms6959. https://www.osti.gov/servlets/purl/1279414.
@article{osti_1279414,
title = {Large resistivity modulation in mixed-phase metallic systems},
author = {Lee, Yeonbae and Liu, Z. Q. and Heron, J. T. and Clarkson, J. D. and Hong, J. and Ko, C. and Biegalski, M. D. and Aschauer, U. and Hsu, S. L. and Nowakowski, M. E. and Wu, J. and Christen, H. M. and Salahuddin, S. and Bokor, J. B. and Spaldin, N. A. and Schlom, D. G. and Ramesh, R.},
abstractNote = {Giant physical responses were discovered, in numerous systems, when two phases coexist; for example, near a phase transition. An intermetallic FeRh system undergoes a first-order antiferromagnetic to ferromagnetic transition above room temperature and shows two-phase coexistence near the transition. We have investigated the effect of an electric field to FeRh/PMN-PT heterostructures and report 8% change in the electrical resistivity of FeRh films. Such a 'giant' electroresistance (GER) response is striking in metallic systems, in which external electric fields are screened, and thus only weakly influence the carrier concentrations and mobilities. We show that our FeRh films comprise coexisting ferromagnetic and antiferromagnetic phases with different resistivities and the origin of the GER effect is the strain-mediated change in their relative proportions. Finally, the observed behaviour is reminiscent of colossal magnetoresistance in perovskite manganites and illustrates the role of mixed-phase coexistence in achieving large changes in physical properties with low-energy external perturbation.},
doi = {10.1038/ncomms6959},
journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 6,
place = {United States},
year = {2015},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 53 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

A Strain-Driven Morphotropic Phase Boundary in BiFeO3
journal, November 2009

  • Zeches, R. J.; Rossell, M. D.; Zhang, J. X.
  • Science, Vol. 326, Issue 5955, p. 977-980
  • DOI: 10.1126/science.1177046

Projector augmented-wave method
journal, December 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Large field-induced strains in a lead-free piezoelectric material
journal, January 2011

  • Zhang, J. X.; Xiang, B.; He, Q.
  • Nature Nanotechnology, Vol. 6, Issue 2, p. 98-102
  • DOI: 10.1038/nnano.2010.265

Ab initiomolecular dynamics for liquid metals
journal, January 1993