skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Agile Electro-Mechanical Product Accelerator - Final Research Performance Progress Report

Abstract

NCDMM recognized the need to focus on the most efficient use of limited resources while ensuring compliance with regulations and minimizing the energy intensity and environmental impact of manufactured components. This was accomplished through the evaluation of current machining and processing practices, and their efficiencies, to further the sustainability of manufacturing as a whole. Additionally, the activities also identified, and furthered the implementation of new “best practices” within the southwestern Pennsylvania manufacturing sector.

Authors:
 [1]
  1. National Center for Defense Manufacturing and Machining, Latrobe, PA (United States)
Publication Date:
Research Org.:
National Center for Defense Manufacturing and Machining, Latrobe, PA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1274500
Report Number(s):
EE0006028
7245395285
DOE Contract Number:
EE0006028
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; ISO50001, Manufacturing Sustainability

Citation Formats

Schmidt, Brian. Agile Electro-Mechanical Product Accelerator - Final Research Performance Progress Report. United States: N. p., 2016. Web. doi:10.2172/1274500.
Schmidt, Brian. Agile Electro-Mechanical Product Accelerator - Final Research Performance Progress Report. United States. doi:10.2172/1274500.
Schmidt, Brian. 2016. "Agile Electro-Mechanical Product Accelerator - Final Research Performance Progress Report". United States. doi:10.2172/1274500. https://www.osti.gov/servlets/purl/1274500.
@article{osti_1274500,
title = {Agile Electro-Mechanical Product Accelerator - Final Research Performance Progress Report},
author = {Schmidt, Brian},
abstractNote = {NCDMM recognized the need to focus on the most efficient use of limited resources while ensuring compliance with regulations and minimizing the energy intensity and environmental impact of manufactured components. This was accomplished through the evaluation of current machining and processing practices, and their efficiencies, to further the sustainability of manufacturing as a whole. Additionally, the activities also identified, and furthered the implementation of new “best practices” within the southwestern Pennsylvania manufacturing sector.},
doi = {10.2172/1274500},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 7
}

Technical Report:

Save / Share:
  • This paper describes a product realization process developed at Sandia National Laboratories by the A-PRIMED project that integrates many of the key components of ``agile manufacturing`` into a complete, step-by-step, design-to-production process. For three separate product realization efforts, each geared to a different set of requirements, A-PRIMED demonstrated product realization of a custom device in less than a month. A-PRIMED used a discriminator (a precision electro-mechanical device) as the demonstration device, but the process is readily adaptable to other electro-mechanical products. The process begins with a qualified design parameter space. From that point, the product realization process encompasses all facetsmore » of requirements development, analysis and testing, design, manufacturing, robotic assembly and quality assurance, as well as product data management and concurrent engineering. In developing the product realization process, A-PRIMED employed an iterative approach whereby after each of three builds, the process was reviewed and refinements made on the basis of lessons learned. This paper describes the integration of project functions and product realization technologies, with references to reports detailing specific facets of the overall process. The process described herein represents the outcome of an empirically-based process development effort that on repeated iterations, was proven successful.« less
  • This report details the research activities carried out under DOE-NEUP award number DE-NE0000724 concerning the evolution of structural and mechanical properties during thermal aging of CF–3 and CF–8 cast duplex stainless steels (CDSS). The overall objective of this project was to use state-of-the-art characterization techniques to elucidate trends and phenomena in the mechanical and structural evolution of cast duplex stainless steels (CDSS) during thermal aging. These steels are commonly used as structural materials in commercial light water nuclear power plants, undergoing aging for decades in operation as cooling water pipes, pump casings, valve bodies, etc. During extended exposure to thesemore » conditions, CDSS are known to undergo a change in mechanical properties resulting in a loss of ductility, i.e. embrittlement. While it is generally accepted that structural changes within the ferrite phase, such as decomposition into iron (Fe)-rich and chromium (Cr)-rich domains, lead to the bulk embrittlement of the steels, many questions remain as to the mechanisms of embrittlement at multiple length scales. This work is intended to shed insight into the atomic level composition changes, associated kinetic mechanisms, and effects of changing phase structure on micro- and nano-scale deformation that lead to loss of impact toughness and tensile ductility in these steels. In general, this project provides a route to answer some of these major questions using techniques such as 3-dimensional (3-D) atom probe tomography (APT) and real-microstructure finite element method (FEM) modeling, which were not readily available when these steels were originally selected for service in light water reactors. Mechanical properties evaluated by Charpy V-notch impact testing (CVN), tensile testing, and microhardness and nanohardness measurements were obtained for each condition and compared with the initial baseline properties to view trends in deformation behavior during aging. Concurrent analysis of the microstructure and nanostructure by atom probe tomography (APT) and transmission electron microscopy (TEM) provide mechanistic insight into the kinetic and mechanical behavior occurring on the nano-scale. The presence and morphology of the ferrite, austenite, and carbide phases have been characterized, and formation of new phases during aging, including spinodal decomposition products (α- and α'-ferrite) and G-phase, have been observed. The mechanical and structural characterization have been used to create accurate FEM models based on the real micro- and nano-structures of the systems. These models provide new insight into the local deformation behavior of these steels and the effects of each individual phase (including ferrite, austenite, carbides, and spinodal decomposition products) on the evolving bulk mechanical behavior of the system. The project was divided into three major tasks: 1. Initial Microstructure and Mechanical Property Survey and Initiate Heat Treatment; 2. Microstructural Characterization and Mechanical Property Testing During Aging; and 3. Microstructure-based Finite Element Modeling. Each of these tasks was successfully executed, resulting in reliable data and analysis that add to the overall body of work on the CDSS materials. Baseline properties and aging trends in mechanical data confirm prior observations and add new insights into the mechanical behavior of the steels. Structural characterization on multiple length scales provides new information on phase changes occurring during aging and sheds light on the kinetic processes occurring at the atomic scale. Furthermore, a combination of mechanical testing and microstructural characterization techniques was utilized to design FEM models of local deformation behavior of the ferrite and austenite phases, providing valuable new information regarding the effects of each of the microstructural components on the hardening and embrittlement processes. The data and analysis presented in this report and the publication associated with this project (§V) increase the understanding of aging and deformation in CF–3 and CF–8 steels. These results provide valuable information that can be utilized to aid in making informed decisions regarding the ongoing use of these steels in commercial nuclear infrastructure.« less
  • This paper describes a product realization process developed and demonstrated at Sandia by the A-PRIMED (Agile Product Realization for Innovative Electro MEchanical Devices) project that integrates many of the key components of ``agile manufacturing`` into a complete, design-to-production process. Evidence indicates that the process has reduced the product realization cycle and assured product quality. Products included discriminators for a robotic quick change adapter and for an electronic defense system. These discriminators, built using A-PRIMED, met random vibration requirements and had life cycles that far surpass the performance obtained from earlier efforts.
  • The South Carolina DOE/EPSCoR Graduate Traineeship Program is currently supporting 20 graduate students through Clemson University, the Medical University of South Carolina, and the University of South Carolina. Research areas include lithium batteries, analytical chemistry, supercritical fluid extraction, multiphase flow remediation, estrogenic contaminants, robotic inspection systems, transuranics and beta emitters, organic waste disposal, fiber optic sensors, sediment computer modeling, groundwater geochemistry, effect of CO{sub 2} on plant/insect interactions, molecular structure of organophosphorus compounds, environmental geology, bioremediation, and stratigraphic modeling. Short summaries are given for each project.