skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Domain wall and interphase boundary motion in (1−x)Bi(Mg 0.5 Ti 0.5 )O 3 –xPbTiO 3 near the morphotropic phase boundary

Authors:
; ; ; ORCiD logo; ORCiD logo; ORCiD logo;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1273669
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 120; Journal Issue: 4; Related Information: CHORUS Timestamp: 2016-12-27 20:37:31; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Tutuncu, Goknur, Chen, Jun, Fan, Longlong, Fancher, Chris M., Forrester, Jennifer S., Zhao, Jianwei, and Jones, Jacob L. Domain wall and interphase boundary motion in (1−x)Bi(Mg 0.5 Ti 0.5 )O 3 –xPbTiO 3 near the morphotropic phase boundary. United States: N. p., 2016. Web. doi:10.1063/1.4959820.
Tutuncu, Goknur, Chen, Jun, Fan, Longlong, Fancher, Chris M., Forrester, Jennifer S., Zhao, Jianwei, & Jones, Jacob L. Domain wall and interphase boundary motion in (1−x)Bi(Mg 0.5 Ti 0.5 )O 3 –xPbTiO 3 near the morphotropic phase boundary. United States. doi:10.1063/1.4959820.
Tutuncu, Goknur, Chen, Jun, Fan, Longlong, Fancher, Chris M., Forrester, Jennifer S., Zhao, Jianwei, and Jones, Jacob L. 2016. "Domain wall and interphase boundary motion in (1−x)Bi(Mg 0.5 Ti 0.5 )O 3 –xPbTiO 3 near the morphotropic phase boundary". United States. doi:10.1063/1.4959820.
@article{osti_1273669,
title = {Domain wall and interphase boundary motion in (1−x)Bi(Mg 0.5 Ti 0.5 )O 3 –xPbTiO 3 near the morphotropic phase boundary},
author = {Tutuncu, Goknur and Chen, Jun and Fan, Longlong and Fancher, Chris M. and Forrester, Jennifer S. and Zhao, Jianwei and Jones, Jacob L.},
abstractNote = {},
doi = {10.1063/1.4959820},
journal = {Journal of Applied Physics},
number = 4,
volume = 120,
place = {United States},
year = 2016,
month = 7
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1063/1.4959820

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Electric field-induced changes in the domain wall motion of (1-x)Bi(Mg 0.5Ti 0.5)O 3–xPbTiO 3 (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x =0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phasesmore » for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less
  • Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT ismore » larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less
  • High energy synchrotron X-ray diffraction, in situ with electric field, was carried out on the morphotropic phase boundary composition of the piezoelectric alloy PbTiO 3-BiScO 3. We demonstrate a strong correlation between ferroelectric-ferroelastic domain reorientation, lattice strain and phase transformation. Lastly, we also show the occurrence of the three phenomena and persistence of their correlation in the weak field regime.
  • Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases inmore » the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.« less
  • We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The resultsmore » of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.« less