skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Performance evaluation of a continuous-flow bioanode microbial electrolysis cell fed with furanic and phenolic compounds

Abstract

Furanic and phenolic compounds, formed during the pretreatment of lignocellulosic biomass, are problematic byproducts in down-stream biofuel processes. A microbial electrolysis cell (MEC) is an alternative technology to handle furanic and phenolic compounds and produce renewable hydrogen (H 2). In this study, we evaluated the performance of a continuous-flow bioanode MEC fed with furanic and phenolic compounds at different operating conditions. All hydraulic retention times (HRTs) tested (6-24 h) resulted in complete transformation of the parent compounds at an organic loading rate (OLR) of 0.2g L -1 per d and applied voltage of 0.6 V. Increasing the OLR to 0.8 g L -1 per d at an HRT of 6h resulted in an increased H 2 production rate from 0.07 to 0.14 L L anode 1 per d, but an OLR of 3.2 g L -1 per d did not lead to a higher H 2 production rate. Significant methane production was observed at an OLR of 3.2 g L -1 per d. The lack of increased H 2 production at the highest OLR tested was due to a limited rate of exoelectrogenesis but not fermentation, evidenced by the accumulation of high acetate levels and higher growth of fermenters andmore » methanogens over exoelectrogens. Increasing applied voltage from 0.6 to 1.0V at an OLR of 3.2 g L -1 per d and HRT of 6h enhanced exoelectrogenesis and resulted in a 1.7-fold increase of H 2 production. Under all operating conditions, more than 90% of the biomass was biofilm-associated. Lastly, the present study provides new insights into the performance of continuous-flow bioelectrochemical systems fed with complex waste streams resulting from the pretreatment of lignocellulosic biomass.« less

Authors:
 [1];  [2];  [1]
  1. Georgia Inst. of Technology, Atlanta, GA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1271867
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 6; Journal Issue: 70; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; Microbial electrolysis; bioelectrochemical systems; hydrogen

Citation Formats

Zeng, Xiaofei, Borole, Abhijeet P., and Pavlostathis, Spyros G. Performance evaluation of a continuous-flow bioanode microbial electrolysis cell fed with furanic and phenolic compounds. United States: N. p., 2016. Web. doi:10.1039/C6RA13735K.
Zeng, Xiaofei, Borole, Abhijeet P., & Pavlostathis, Spyros G. Performance evaluation of a continuous-flow bioanode microbial electrolysis cell fed with furanic and phenolic compounds. United States. doi:10.1039/C6RA13735K.
Zeng, Xiaofei, Borole, Abhijeet P., and Pavlostathis, Spyros G. Mon . "Performance evaluation of a continuous-flow bioanode microbial electrolysis cell fed with furanic and phenolic compounds". United States. doi:10.1039/C6RA13735K. https://www.osti.gov/servlets/purl/1271867.
@article{osti_1271867,
title = {Performance evaluation of a continuous-flow bioanode microbial electrolysis cell fed with furanic and phenolic compounds},
author = {Zeng, Xiaofei and Borole, Abhijeet P. and Pavlostathis, Spyros G.},
abstractNote = {Furanic and phenolic compounds, formed during the pretreatment of lignocellulosic biomass, are problematic byproducts in down-stream biofuel processes. A microbial electrolysis cell (MEC) is an alternative technology to handle furanic and phenolic compounds and produce renewable hydrogen (H2). In this study, we evaluated the performance of a continuous-flow bioanode MEC fed with furanic and phenolic compounds at different operating conditions. All hydraulic retention times (HRTs) tested (6-24 h) resulted in complete transformation of the parent compounds at an organic loading rate (OLR) of 0.2g L-1 per d and applied voltage of 0.6 V. Increasing the OLR to 0.8 g L-1 per d at an HRT of 6h resulted in an increased H2 production rate from 0.07 to 0.14 L Lanode 1 per d, but an OLR of 3.2 g L-1 per d did not lead to a higher H2 production rate. Significant methane production was observed at an OLR of 3.2 g L-1 per d. The lack of increased H2 production at the highest OLR tested was due to a limited rate of exoelectrogenesis but not fermentation, evidenced by the accumulation of high acetate levels and higher growth of fermenters and methanogens over exoelectrogens. Increasing applied voltage from 0.6 to 1.0V at an OLR of 3.2 g L-1 per d and HRT of 6h enhanced exoelectrogenesis and resulted in a 1.7-fold increase of H2 production. Under all operating conditions, more than 90% of the biomass was biofilm-associated. Lastly, the present study provides new insights into the performance of continuous-flow bioelectrochemical systems fed with complex waste streams resulting from the pretreatment of lignocellulosic biomass.},
doi = {10.1039/C6RA13735K},
journal = {RSC Advances},
number = 70,
volume = 6,
place = {United States},
year = {Mon Jul 04 00:00:00 EDT 2016},
month = {Mon Jul 04 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • Furanic and phenolic compounds are 20 lignocellulose-derived compounds known to inhibit to H2- and ethanol- producing microorganisms in dark fermentation. Bioelectrochemical conversion of furanic and phenolic compounds to electricity or H2 has recently been demonstrated as a productive method to use these compounds. However, potential inhibitory effect of furanic and phenolic compounds on exoelectrogenesis in bioelectrochemical systems is not well understood. This study systematically investigated the inhibitory effect of furfural (FF), 5-hydroxymethylfurfural (HMF), syringic acid (SA), vanillic acid (VA), and 4-hydroxybenzoic acid (HBA) on exoelectrogenesis in the bioanode of a microbial electrolysis cell. A mixture of these five compounds atmore » an increasing initial total concentration from 0.8 to 8.0 g/L resulted in current decrease up to 91%. The observed inhibition primarily affected exoelectrogenesis, instead of non-exoelectrogenic biotransformation pathways (e.g., fermentation) of the five compounds. Furthermore, the parent compounds at a high concentration, as opposed to their biotransformation products, were responsible for the observed inhibition. Tests with individual compounds show that all five parent compounds contributed to the observed inhibition by the mixture. The IC50 (concentration resulting in 50% current decrease) was estimated as 2.7 g/L for FF, 3.0 g/L for HMF, 1.9 g/L for SA, 2.1 g/L for VA and 2.0 g/L for HBA. Nevertheless, these compounds below their non-inhibitory concentrations jointly resulted in significant inhibition as a mixture. Catechol and phenol, which were persistent biotransformation products of the mixture, inhibited exoelectrogens at high concentrations, but to a lesser extent than the parent compounds. Recovery of exoelectrogenesis from inhibition by all compounds was observed, except for catechol, which resulted in irreversible inhibition. The reversibility of inhibition, as well as the observed difference in recovery rates, suggest different modes of exoelectrogenesis inhibition, related to the hydrophobicity of the inhibiting compounds.« less
  • Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in themore » highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed exoelectrogenic activity in batch runs conducted with SA, VA and HBA was controlled by the extent of fermentative transformation of the three phenolic compounds in the bioanode, which is related to the number and position of the methoxy and hydroxyl substituents.« less
  • In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H 2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H 2 production, as well as the anode microbial community structure were investigated. The five compoundsmore » were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H 2 yield varied from 0.26 to 0.42 g H 2-COD/g COD removed in the anode, and the bioanode volume-normalized H 2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H 2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H 2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H 2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less
  • A compact, three-in-one, flow-through, porous, electrode design with minimal electrode spacing and minimal dead volume was implemented to develop a microbial fuel cell (MFC) with improved anode performance. A biofilm-dominated anode consortium enriched under a multimode, continuous-flow regime was used. The increase in the power density of the MFC was investigated by changing the cathode (type, as well as catholyte strength) to determine whether anode was limiting. The power density obtained with an air-breathing cathode was 56 W/m3 of net anode volume (590 mW/m2) and 203 W/m3 (2160 mW/m2) with a 50-mM ferricyanide- based cathode. Increasing the ferricyanide concentration andmore » ionic strength further increased the power density, reaching 304 W/m3 (3220 mW/m2, with 200 mM ferricyanide and 200 mM buffer concentration). The increasing trend in the power density indicated that the anode was not limiting and that higher power densities could be obtained using cathodes capable of higher rates of oxidation. The internal solution resistance for the MFC was 5 6 X, which supported the improved performance of the anode design. A new parameter defined as the ratio of projected surface area to total anode volume is suggested as a design parameter to relate volumetric and area-based power densities and to enable comparison of various MFC configurations.« less