skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Forensic Application of Mass Spectrometry for Chemical Warfare Agent Surrogate Lifetimes on Building and Furniture Materials.

Abstract

Abstract not provided.

Authors:
; ; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1267098
Report Number(s):
SAND2007-2034C
526868
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the 2007 IEEE Conference on Technologies for Homeland Security: held May 16-17, 2007 in Boston, MA.
Country of Publication:
United States
Language:
English

Citation Formats

Borek, Theodore T,, Wiemann, Dora K., Alam, Todd Michael, and McIntyre, Sarah K. Forensic Application of Mass Spectrometry for Chemical Warfare Agent Surrogate Lifetimes on Building and Furniture Materials.. United States: N. p., 2007. Web.
Borek, Theodore T,, Wiemann, Dora K., Alam, Todd Michael, & McIntyre, Sarah K. Forensic Application of Mass Spectrometry for Chemical Warfare Agent Surrogate Lifetimes on Building and Furniture Materials.. United States.
Borek, Theodore T,, Wiemann, Dora K., Alam, Todd Michael, and McIntyre, Sarah K. Sun . "Forensic Application of Mass Spectrometry for Chemical Warfare Agent Surrogate Lifetimes on Building and Furniture Materials.". United States. doi:. https://www.osti.gov/servlets/purl/1267098.
@article{osti_1267098,
title = {Forensic Application of Mass Spectrometry for Chemical Warfare Agent Surrogate Lifetimes on Building and Furniture Materials.},
author = {Borek, Theodore T, and Wiemann, Dora K. and Alam, Todd Michael and McIntyre, Sarah K.},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Apr 01 00:00:00 EDT 2007},
month = {Sun Apr 01 00:00:00 EDT 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • In an initial investigation of the potential utility of chemical ionization (CI) mass spectrometry of selected analogs of chemical warfare agents using metal ions, the reactions of manganese ions with chloroalkyl sulfides and organophosphonates have been followed in a Fourier transform mass spectrometer. Mn{sup +} ions, produced by UV laser radiation focused on a stainless steel target, react rapidly with each molecule studied to provide characteristic mass spectra. The manganese ion CI mass spectra are compared to mass spectra obtained via electron impact (EI) and methane CI.
  • The factory site of an old mustard gas plant was investigated with on-site analysis methods. Using ion mobility spectrometry and mass spectrometry a lot of degradation products of mustard gas could be detected. Sulfur mustard was found in one soil sample and in ceramic material of a bunker used for storage of the produced warfare agents. Concentrations of the mustard gas are in the sub ppb level. The results of ion mobility and mass spectrometry agreed in 95 % of the investigated samples.
  • Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle (~1 pg) without the need formore » consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.« less
  • During the summer of 2015, I participated in the DHS HS-STEM fellowship at Sandia National Laboratories (SNL, NM) under the supervision of Dr. Todd M. Alam in his Nuclear Magnetic Resonance (NMR) Spectroscopy research group. While with the group, my main project involved pursing various hydrolysis reactions with Diethyl Chlorophosphate (DECP), a surrogate for the agent Sarin (GB). Specifically, I performed different hydrolysis reactions, monitored and tracked the different phosphorous containing species using phosphorous ( 31P) NMR spectroscopy. With the data collected, I performed kinetics studies mapping the rates of DECP hydrolysis. I also used the NMR of different nucleimore » such as 1H, 13C, 17O, and 35Cl to help understand the complexity of the reactions that take place. Finally, my last task at SNL was to work with Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) NMR Spectroscopy optimizing conditions for 19F- 31P filtering NMR experiments.« less
  • We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxide materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samplesmore » may also provide clues as to the age, source, or process history of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science to characterize actinide oxide molecular structures for forensic science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.« less