skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DETERMINATION OF THE GAMMA-RAY SKYSHINE DOSE CONTRIBUTION IN A LOSS OF SHIELDING ACCIDENT.

Abstract

Abstract not provided.

Authors:
; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1267020
Report Number(s):
SAND2007-0588C
524062
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the Waste Managment Conference held February 25 - March 1, 2007 in Tucson, AZ.
Country of Publication:
United States
Language:
English

Citation Formats

Weiner, Ruth F., Osborn, Douglas., and Dennis, Matthew L. DETERMINATION OF THE GAMMA-RAY SKYSHINE DOSE CONTRIBUTION IN A LOSS OF SHIELDING ACCIDENT.. United States: N. p., 2007. Web.
Weiner, Ruth F., Osborn, Douglas., & Dennis, Matthew L. DETERMINATION OF THE GAMMA-RAY SKYSHINE DOSE CONTRIBUTION IN A LOSS OF SHIELDING ACCIDENT.. United States.
Weiner, Ruth F., Osborn, Douglas., and Dennis, Matthew L. Mon . "DETERMINATION OF THE GAMMA-RAY SKYSHINE DOSE CONTRIBUTION IN A LOSS OF SHIELDING ACCIDENT.". United States. doi:. https://www.osti.gov/servlets/purl/1267020.
@article{osti_1267020,
title = {DETERMINATION OF THE GAMMA-RAY SKYSHINE DOSE CONTRIBUTION IN A LOSS OF SHIELDING ACCIDENT.},
author = {Weiner, Ruth F. and Osborn, Douglas. and Dennis, Matthew L.},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The goal of this research is to determine the gamma-ray dose contribution from skyshine. In a transportation accident involving the loss of lead gamma shielding, first responders to the accident will be exposed to both direct gamma radiation streaming from the exposed spent nuclear fuel and atmospherically reflected gamma radiation. The reflected radiation is referred to as skyshine and should contribute minimally to the overall dose; however, when there is minimal shielding above the exposed source, skyshine at large distances from the source must be considered. The program SKYDOSE developed by Shultis and Faw evaluates the gamma-ray skyshine dose frommore » a point, isotropic, polyenergetic, gamma-photon source. Assuming an infinite black wall shielding all direct radiation, the model assumes a first responder is located at varying distances from the wall. Skyshine doses are calculated both through SKYDOSE's integral line-beam method and an approximate approach prescribed by the National Council of Radiation Protection and Measurements. Initial results from SKYDOSE indicate nearly equivalent dose rates from either direct or skyshine radiation at nine meters from the wall, which seemed unusual and not readily explained. NCRP methodology, however, yields skyshine dose rates which are drastically smaller than direct dose rates at the same distance. Further investigation using the program MicroSkyshine{sup R}, which allows a variety of source configurations, suggests skyshine contributes minimally to dose in a loss-of-shielding accident. (authors)« less
  • Calculations of the skyshine gamma-ray dose rates from three spent fuel storage pools under worst case accident conditions have been made using the discrete ordinates code DOT-IV and the Monte Carlo code MORSE and have been compared to those of two previous methods. The DNA 37N-21G group cross-section library was utilized in the calculations, together with the Claiborne-Trubey gamma-ray dose factors taken from the same library. Plots of all results are presented. It was found that the dose was a strong function of the iron thickness over the fuel assemblies, the initial angular distribution of the emitted radiation, and themore » photon source near the top of the assemblies. 16 refs., 11 figs., 7 tabs.« less
  • This report describes many of the computational methods employed within the SKYSHINE-II program. A brief description of the new data base is included, as is a description of the input data requirements and formats needed to properly execute a SKYSHINE-II problem. Utilization instructions for the program are provided for operation of the SKYSHINE-II Code on the Brookhaven National Laboratory Central Scientific Computing Facility (See NUREG/CR-0781, RRA-T7901 for complete information).
  • Natural gamma-ray background is composed of four components; which include cosmic rays, cosmic ray produced atmospheric activity, terrestrial sources, and skyshine from terrestrial sources. Skyshine is radiation scattered from the air above a source that can produce a signal in radiation detection instrumentation. Skyshine has been studied for many years but its contribution to the natural background observed in a detector has not been studied. A large NaI(Tl) detector was used to investigate each of the four components of the natural background using a series of 48-hour measurements and appropriate lead shielding configured to discriminate contributions from each component. Itmore » was found that while the contribution from skyshine decreases rapidly with energy, it represents a significant portion of the background spectrum below ~500keV. A similar campaign of measurements using a HPGe detector is underway.« less