skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mustards and Vesicants

 [1];  [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
Work for Others (WFO)
OSTI Identifier:
DOE Contract Number:
Resource Type:
Country of Publication:
United States

Citation Formats

Young, Robert, and Bast, Cheryl B. Mustards and Vesicants. United States: N. p., 2015. Web. doi:10.1016/B978-0-12-800159-2.00008-7.
Young, Robert, & Bast, Cheryl B. Mustards and Vesicants. United States. doi:10.1016/B978-0-12-800159-2.00008-7.
Young, Robert, and Bast, Cheryl B. 2015. "Mustards and Vesicants". United States. doi:10.1016/B978-0-12-800159-2.00008-7.
title = {Mustards and Vesicants},
author = {Young, Robert and Bast, Cheryl B},
abstractNote = {},
doi = {10.1016/B978-0-12-800159-2.00008-7},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2015,
month = 1

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this book.

Save / Share:
  • Vesicants (sulfur mustards, lewisite, and nitrogen mustards) are chemicals that cause blistering of the skin. Developed as chemical warfare agents, their biological activity is complex and not fully understood. These vesicants in liquid or vapor form are capable of causing injury to most any tissue. Contact with the skin results in erythema and blistering. Exposure to vapors produces ocular and respiratory effects which occur at exposures below those causing dermal effects. Systemic and long-lasting effects may occur, especially following acute exposures that result in severe injury. Multi-organ involvement and fluid loss shock resulting in death may follow severe exposures. Asmore » alkylating agents, all of the mustards are known or potential carcinogens. The carcinogenic potential of lewisite in humans is equivocal. Toxicity data in animals are available for the vesicants although data on sulfur mustard and lewisite are more extensive than for the nitrogen mustards. Data from tests with human volunteers and occupational exposure information are also available. These data collectively have provided a basis for the development of exposure standards, guidelines, and criteria for use in emergency planning and emergency response, and remediation efforts. The mode of action of the vesicants is complex, not fully understood, and represents an ongoing area of investigation especially with respect to treatment of vesicant-induced injury. Prevention of exposure and decontamination are critical initial steps in eliminating or minimizing injury. With the exception of arsenic chelating antidotes (e.g., British anti-lewisite; BAL) for lewisite, no antidotes exist for the vesicant agents. Medical management currently focuses on palliative treatment of signs and symptoms.« less
  • MREF Task 89-07 encompassed four vesicant assays and four nerve agent assays. The four vesicant assays evaluated the candidate P and T compound solubility limitations, direct cytotoxic effects, efficacy against HD-induced cellular nicotinamide adenine dinucleotide (NAD+) depletion, and efficacy against HD-induced cytotoxicity. Normal human epidermal cells (NHEKs) were used to evaluate candidate PT compound efficacy against HD-induced NAD+ depletion, and peripheral blood mononuclear leukocytes (PBMC) were used in direct cytotoxicity and HD-induced cytotoxicity assays. The four nerve agent assays assessed candidate PT compound direct inhibitory effects on acetylcholinesterase (AChE) activity, candidate PT compound efficacy in reactivating Tabun (GA) - andmore » O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX)-inhibited A ThE, and candidate PT compound efficacy in slowing the aging rate of Soman (GD) inhibited AChE. All nerve agent and vesicant assays with the exception of the direct cytotoxicity and HD-induced cytotoxicity assays were initially established under MREF Task 88-36. The direct cytotoxicity and HD-induced cytotoxicity assays were transitioned to the MREF from USAMRICD and validated for use in routine screening procedures, including the generation of control database values, under Task 89-07. Solubility data were obtained for 37 compounds submitted for evaluation in the vesicant assays. Thirty-five of these compounds were evaluated for direct cytotoxicity, and their effect against HD-induced cytotoxicity, while 13 compound is were evaluated for efficacy against HD-induced NAD+ depletion. AChE reactivation, ACHE aging, ACHE inhibition, In vitro, Cytotoxicity , Vesicant assays, Nerve ag.« less
  • The present report evaluates toxicologic and epidemiologic data relevant to the testing of approximately 750 subjects exposed to cholinesterase reactivators, about 260 exposed to psychochemicals, and 1,500 exposed to irritants or vesicants. A remaining group of subjects used largely in tests involving placebo or innocuous chemicals or conditions is available for comparison and will be discussed later. The report is the work of three panels of scientists--the Panel on Cholinesterase Reactivator Chemicals, the Panel on Psychochemicals, and the Panel on Irritants and Vesicants. The chairman of each panel was selected from the Committee on Toxicology, and the members were selectedmore » on the basis of their knowledge of the compounds in question or because they represented required disciplines.« less
  • The biochemical sequelae to chloroethyl mustard exposure correspond very well to toxic processes initiated by free radicals. Additionally, mustard solutions contain spontaneously formed cyclic onium ions which produce carbon free radicals when reduced electrochemically. Therefore, we hypothesized that the onium ions of sulfur or nitrogen mustards might produce carbon free radicals upon being reduced enzymatically, and that these radicals might constitute a metabolic activation. We set out to document radical production using an in vitro metabolic system and electron paramagnetic resonance (EPR). Our system consisted of NADPH, one of several pyridine nucleotide-driven flavoprotein reductases, cytochrome c as a terminal electronmore » acceptor, various sulfur or nitrogen mustards and the spin trap {alpha}-[4-pyridyl-1-oxide]-N-tert-butylnitrone in buffer. Reactions were started by adding the reductase to the other materials, vortexing and immediately transferring the mixture to a 10 mm EPR flat cell. Repeated scans on a Bruker ESP 300E EPR spectrometer produced a triplet of doublets with hyperfine splitting constants of a{sub N} = 15.483 G and a{sub H} = 2.512 G. The outcome supported our hypothesis that carbon-centered free radicals are produced when mustard-related onium ions are enzymatically reduced. The EPR results varied little with the chloroethyl compound used or with porcine or human cytochrome P450 reductase, the reductase domain of rat brain neuronal nitric oxide synthase or rat liver thioredoxin reductase. Our results offer new insight into the basis for mustard-induced vesication and the outcome of exposure to different mustards. The free radical model provides an explanation for similarities in the lesions arising from mustard exposure and energy-based lesions such as those from heat, ultraviolet and nuclear radiation as well as damage across tissue types such as skin, eyes or airway epithelium.« less