skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries

Abstract

Here, we report direct manufacturing of high-capacity carbon/silicon composite fiber electrodes for lithium-ion batteries produced via a flexible low-cost melt processing route, yielding low-cost stable silicon particles coated in situ by a 10 nanometer thick protective silica layer. Moreover, the core–shell silicon/SiO 2 islands are embedded in electrochemically active and electronically conductive carbon fiber derived from lignin precursor material. The silicon–silica–carbon composites exhibit capacities exceeding 700 mAh g -1 with Coulombic efficiencies in excess of 99.5 %. Finally, the high efficiency, stability, and rate capability are linked to the nanocrystalline structure and abundant, uniform nanometer-thick SiO 2 interfaces that are produced during the spinning and subsequent pyrolysis of the precursor blend.

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Indian Inst. of Technology (IIT), Yedduaram (India)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Critical Materials Institute (CMI)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1265366
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article
Journal Name:
Energy Technology
Additional Journal Information:
Journal Volume: 2; Journal Issue: 9-10; Journal ID: ISSN 2194-4288
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Rios, Orlando, Martha, Surendra K., McGuire, Michael A., Tenhaeff, Wyatt, More, Karren, Daniel, Claus, and Nanda, Jagjit. Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries. United States: N. p., 2014. Web. doi:10.1002/ente.201402049.
Rios, Orlando, Martha, Surendra K., McGuire, Michael A., Tenhaeff, Wyatt, More, Karren, Daniel, Claus, & Nanda, Jagjit. Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries. United States. doi:10.1002/ente.201402049.
Rios, Orlando, Martha, Surendra K., McGuire, Michael A., Tenhaeff, Wyatt, More, Karren, Daniel, Claus, and Nanda, Jagjit. Tue . "Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries". United States. doi:10.1002/ente.201402049.
@article{osti_1265366,
title = {Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries},
author = {Rios, Orlando and Martha, Surendra K. and McGuire, Michael A. and Tenhaeff, Wyatt and More, Karren and Daniel, Claus and Nanda, Jagjit},
abstractNote = {Here, we report direct manufacturing of high-capacity carbon/silicon composite fiber electrodes for lithium-ion batteries produced via a flexible low-cost melt processing route, yielding low-cost stable silicon particles coated in situ by a 10 nanometer thick protective silica layer. Moreover, the core–shell silicon/SiO2 islands are embedded in electrochemically active and electronically conductive carbon fiber derived from lignin precursor material. The silicon–silica–carbon composites exhibit capacities exceeding 700 mAh g-1 with Coulombic efficiencies in excess of 99.5 %. Finally, the high efficiency, stability, and rate capability are linked to the nanocrystalline structure and abundant, uniform nanometer-thick SiO2 interfaces that are produced during the spinning and subsequent pyrolysis of the precursor blend.},
doi = {10.1002/ente.201402049},
journal = {Energy Technology},
issn = {2194-4288},
number = 9-10,
volume = 2,
place = {United States},
year = {2014},
month = {8}
}

Works referenced in this record:

Lithium Storage in Carbon Nanostructures
journal, July 2009


Oriented Nanostructures for Energy Conversion and Storage
journal, September 2008

  • Liu, Jun; Cao, Guozhong; Yang, Zhenguo
  • ChemSusChem, Vol. 1, Issue 8-9, p. 676-697
  • DOI: 10.1002/cssc.200800087

High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries
journal, January 2003

  • Maranchi, J. P.; Hepp, A. F.; Kumta, P. N.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 9
  • DOI: 10.1149/1.1596918

Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
journal, October 2013


Reversible Cycling of Crystalline Silicon Powder
journal, January 2007

  • Obrovac, M. N.; Krause, L. J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2402112

Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes
journal, September 2011

  • McDowell, Matthew T.; Lee, Seok Woo; Ryu, Ill
  • Nano Letters, Vol. 11, Issue 9
  • DOI: 10.1021/nl202630n

In situ Raman microscopy during discharge of a high capacity silicon–carbon composite Li-ion battery negative electrode
journal, January 2009

  • Nanda, Jagjit; Datta, Moni Kanchan; Remillard, Jeffrey T.
  • Electrochemistry Communications, Vol. 11, Issue 1
  • DOI: 10.1016/j.elecom.2008.11.006

The Path Forward for Biofuels and Biomaterials
journal, January 2006

  • Ragauskas, Arthur J.; Williams, Charlotte K.; Davison, Brian H.
  • Science, Vol. 311, Issue 5760, p. 484-489
  • DOI: 10.1126/science.1114736

Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries
journal, January 2010

  • Su, Liwei; Zhou, Zhen; Ren, Manman
  • Chemical Communications, Vol. 46, Issue 15
  • DOI: 10.1039/b925696b

Synthesis and characterization of lignin-based carbon materials with tunable microstructure
journal, January 2014

  • Chatterjee, Sabornie; Clingenpeel, Amy; McKenna, Amy
  • RSC Adv., Vol. 4, Issue 9
  • DOI: 10.1039/C3RA46928J

Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy
journal, September 2012

  • McDowell, Matthew T.; Ryu, Ill; Lee, Seok Woo
  • Advanced Materials, Vol. 24, Issue 45
  • DOI: 10.1002/adma.201202744

Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission
journal, January 2010

  • Rhodes, Kevin; Dudney, Nancy; Lara-Curzio, Edgar
  • Journal of The Electrochemical Society, Vol. 157, Issue 12
  • DOI: 10.1149/1.3489374

Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes
journal, January 2012

  • Wu, Hui; Zheng, Guangyuan; Liu, Nian
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203967r

Highly Robust Lithium Ion Battery Anodes from Lignin: An Abundant, Renewable, and Low-Cost Material
journal, August 2013

  • Tenhaeff, Wyatt E.; Rios, Orlando; More, Karren
  • Advanced Functional Materials, Vol. 24, Issue 1
  • DOI: 10.1002/adfm.201301420

Insertion Electrode Materials for Rechargeable Lithium Batteries
journal, July 1998


A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery
journal, October 2011


Raman microprobe studies on carbon materials
journal, January 1994


A review of conduction phenomena in Li-ion batteries
journal, December 2010


Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries
journal, January 2012

  • Chen, Shuru; Gordin, Mikhail L.; Yi, Ran
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 37
  • DOI: 10.1039/c2cp42231j

Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes
journal, March 2010


Electrochemical lithiation of tin and tin-based intermetallics and composites
journal, September 1999


Alloy Design for Lithium-Ion Battery Anodes
journal, January 2007

  • Obrovac, M. N.; Christensen, Leif; Le, Dinh Ba
  • Journal of The Electrochemical Society, Vol. 154, Issue 9, p. A849-A855
  • DOI: 10.1149/1.2752985

Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material
journal, July 2013