skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Air riding seal for a turbine

Abstract

An air riding seal between a rotor and a stator in a turbine of a gas turbine engine, where an annular piston is movable in an axial direction within a housing that extends from the stator, and a bellows is secured to the annular piston to form a flexible air passageway from a compressed air inlet through the annular piston and into a cushion cavity that forms an air riding seal between the annular piston and the rotor sealing surface. In another embodiment, a flexible seal secured to and extending from the annular piston forms a sealing surface between the annular piston chamber and the annular piston to provide a seal and allow for axial movement.

Inventors:
; ; ;
Publication Date:
Research Org.:
S & J DESIGN LLC, Jupiter, FL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1264420
Patent Number(s):
9,394,799
Application Number:
14/795,095
Assignee:
S & J DESIGN LLC (Jupiter, FL) CHO
DOE Contract Number:
SC0008218
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Jul 09
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 33 ADVANCED PROPULSION SYSTEMS

Citation Formats

Mills, Jacob A, Brown, Wesley D, Sexton, Thomas D, and Jones, Russell B. Air riding seal for a turbine. United States: N. p., 2016. Web.
Mills, Jacob A, Brown, Wesley D, Sexton, Thomas D, & Jones, Russell B. Air riding seal for a turbine. United States.
Mills, Jacob A, Brown, Wesley D, Sexton, Thomas D, and Jones, Russell B. 2016. "Air riding seal for a turbine". United States. doi:. https://www.osti.gov/servlets/purl/1264420.
@article{osti_1264420,
title = {Air riding seal for a turbine},
author = {Mills, Jacob A and Brown, Wesley D and Sexton, Thomas D and Jones, Russell B},
abstractNote = {An air riding seal between a rotor and a stator in a turbine of a gas turbine engine, where an annular piston is movable in an axial direction within a housing that extends from the stator, and a bellows is secured to the annular piston to form a flexible air passageway from a compressed air inlet through the annular piston and into a cushion cavity that forms an air riding seal between the annular piston and the rotor sealing surface. In another embodiment, a flexible seal secured to and extending from the annular piston forms a sealing surface between the annular piston chamber and the annular piston to provide a seal and allow for axial movement.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 7
}

Patent:

Save / Share:
  • A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, and a central passage connecting the annular cavity to the annular piston chamber to supply compressed air to the seal face, where the annular piston assembly is a split piston assembly to maintain a tight seal as coning of the rotor disk occurs.
  • A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber formed in the stator, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, where the axial moveable annular piston includes an inlet scoop on a side opposite to the annular cavity that scoops up the swirling cooling air and directs the cooling air to the annular cavity to form an air cushion with the seal surface of the rotor.
  • A turbine of a gas turbine engine has an air riding seal that forms a seal between a rotor and a stator of the turbine, the air riding seal including an annular piston movable in an axial direction under the influence of a pressure on one side with a pressure acting on an opposite side that self-balances the air riding seal during the steady state condition of the engine and lifts off the seal during engine transients.
  • An aerodynamic seal assembly for a rotary machine includes multiple sealing segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward load-bearing section and an aft load-bearing section configured to generate an aerodynamic force between the shoe plate and the rotor. The shoe plate includes at least one labyrinth teeth facing the rotor and positioned between the forward load-bearing section and the aft load-bearing section. The sealing segment also includes at least one spring connected to a pedestal located about midway of an axial length of the shoemore » plate and to a stator interface element. Further, the sealing segment includes a rigid segmented secondary seal attached to the stator interface element at one first end and in contact with the pedestal of the shoe plate at one second end.« less
  • An air riding seal for a turbine in a gas turbine engine, where an annular piston is axial moveable within an annular piston chamber formed in a stator of the turbine and forms a seal with a surface on the rotor using pressurized air that forms a cushion in a pocket of the annular piston. A purge cavity is formed on the annular piston and is connected to a purge hole that extends through the annular piston to a lower pressure region around the annular piston or through the rotor to an opposite side. The annular piston is sealed alsomore » with inner and outer seals that can be a labyrinth seal to form an additional seal than the cushion of air in the pocket to prevent the face of the air riding seal from overheating.« less