skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data

Abstract

We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec –2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 10 12 to 6 × 10 13 M , respectively.

Authors:
ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ; more »; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ORCiD logo; ORCiD logo; ; ; ORCiD logo; ; ; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ; ; ORCiD logo; ; ; ; « less
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
The DES Collaboration
OSTI Identifier:
1264019
Report Number(s):
FERMILAB-PUB-15-509-AE; arXiv:1512.03062
Journal ID: ISSN 1538-4357; 1409053
Grant/Contract Number:
AC02-07CH11359
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 827; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: observations; galaxies: clusters: general; galaxies: distances and redshifts; gravitational lensing: strong; methods: observational; techniques: spectroscopic

Citation Formats

Nord, B., Buckley-Geer, E., Lin, H., Diehl, H. T., Helsby, J., Kuropatkin, N., Amara, A., Collett, T., Allam, S., Caminha, G. B., De Bom, C., Desai, S., Dúmet-Montoya, H., da S. Pereira, M. Elidaiana, Finley, D. A., Flaugher, B., Furlanetto, C., Gaitsch, H., Gill, M., Merritt, K. W., More, A., Tucker, D., Saro, A., Rykoff, E. S., Rozo, E., Birrer, S., Abdalla, F. B., Agnello, A., Auger, M., Brunner, R. J., Kind, M. Carrasco, Castander, F. J., Cunha, C. E., da Costa, L. N., Foley, R. J., Gerdes, D. W., Glazebrook, K., Gschwend, J., Hartley, W., Kessler, R., Lagattuta, D., Lewis, G., Maia, M. A. G., Makler, M., Menanteau, F., Niernberg, A., Scolnic, D., Vieira, J. D., Gramillano, R., Abbott, T. M. C., Banerji, M., Benoit-Lévy, A., Brooks, D., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carretero, J., D’Andrea, C. B., Dietrich, J. P., Doel, P., Evrard, A. E., Frieman, J., Gaztanaga, E., Gruen, D., Honscheid, K., James, D. J., Kuehn, K., Li, T. S., Lima, M., Marshall, J. L., Martini, P., Melchior, P., Miquel, R., Neilsen, E., Nichol, R. C., Ogando, R., Plazas, A. A., Romer, A. K., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Walker, A. R., Wester, W., and Zhang, Y. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data. United States: N. p., 2016. Web. doi:10.3847/0004-637X/827/1/51.
Nord, B., Buckley-Geer, E., Lin, H., Diehl, H. T., Helsby, J., Kuropatkin, N., Amara, A., Collett, T., Allam, S., Caminha, G. B., De Bom, C., Desai, S., Dúmet-Montoya, H., da S. Pereira, M. Elidaiana, Finley, D. A., Flaugher, B., Furlanetto, C., Gaitsch, H., Gill, M., Merritt, K. W., More, A., Tucker, D., Saro, A., Rykoff, E. S., Rozo, E., Birrer, S., Abdalla, F. B., Agnello, A., Auger, M., Brunner, R. J., Kind, M. Carrasco, Castander, F. J., Cunha, C. E., da Costa, L. N., Foley, R. J., Gerdes, D. W., Glazebrook, K., Gschwend, J., Hartley, W., Kessler, R., Lagattuta, D., Lewis, G., Maia, M. A. G., Makler, M., Menanteau, F., Niernberg, A., Scolnic, D., Vieira, J. D., Gramillano, R., Abbott, T. M. C., Banerji, M., Benoit-Lévy, A., Brooks, D., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carretero, J., D’Andrea, C. B., Dietrich, J. P., Doel, P., Evrard, A. E., Frieman, J., Gaztanaga, E., Gruen, D., Honscheid, K., James, D. J., Kuehn, K., Li, T. S., Lima, M., Marshall, J. L., Martini, P., Melchior, P., Miquel, R., Neilsen, E., Nichol, R. C., Ogando, R., Plazas, A. A., Romer, A. K., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Walker, A. R., Wester, W., & Zhang, Y. Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data. United States. doi:10.3847/0004-637X/827/1/51.
Nord, B., Buckley-Geer, E., Lin, H., Diehl, H. T., Helsby, J., Kuropatkin, N., Amara, A., Collett, T., Allam, S., Caminha, G. B., De Bom, C., Desai, S., Dúmet-Montoya, H., da S. Pereira, M. Elidaiana, Finley, D. A., Flaugher, B., Furlanetto, C., Gaitsch, H., Gill, M., Merritt, K. W., More, A., Tucker, D., Saro, A., Rykoff, E. S., Rozo, E., Birrer, S., Abdalla, F. B., Agnello, A., Auger, M., Brunner, R. J., Kind, M. Carrasco, Castander, F. J., Cunha, C. E., da Costa, L. N., Foley, R. J., Gerdes, D. W., Glazebrook, K., Gschwend, J., Hartley, W., Kessler, R., Lagattuta, D., Lewis, G., Maia, M. A. G., Makler, M., Menanteau, F., Niernberg, A., Scolnic, D., Vieira, J. D., Gramillano, R., Abbott, T. M. C., Banerji, M., Benoit-Lévy, A., Brooks, D., Burke, D. L., Capozzi, D., Rosell, A. Carnero, Carretero, J., D’Andrea, C. B., Dietrich, J. P., Doel, P., Evrard, A. E., Frieman, J., Gaztanaga, E., Gruen, D., Honscheid, K., James, D. J., Kuehn, K., Li, T. S., Lima, M., Marshall, J. L., Martini, P., Melchior, P., Miquel, R., Neilsen, E., Nichol, R. C., Ogando, R., Plazas, A. A., Romer, A. K., Sako, M., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thaler, J., Walker, A. R., Wester, W., and Zhang, Y. Fri . "Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data". United States. doi:10.3847/0004-637X/827/1/51. https://www.osti.gov/servlets/purl/1264019.
@article{osti_1264019,
title = {Observation and confirmation of six strong-lensing systems in the Dark Energy Survey science verification data},
author = {Nord, B. and Buckley-Geer, E. and Lin, H. and Diehl, H. T. and Helsby, J. and Kuropatkin, N. and Amara, A. and Collett, T. and Allam, S. and Caminha, G. B. and De Bom, C. and Desai, S. and Dúmet-Montoya, H. and da S. Pereira, M. Elidaiana and Finley, D. A. and Flaugher, B. and Furlanetto, C. and Gaitsch, H. and Gill, M. and Merritt, K. W. and More, A. and Tucker, D. and Saro, A. and Rykoff, E. S. and Rozo, E. and Birrer, S. and Abdalla, F. B. and Agnello, A. and Auger, M. and Brunner, R. J. and Kind, M. Carrasco and Castander, F. J. and Cunha, C. E. and da Costa, L. N. and Foley, R. J. and Gerdes, D. W. and Glazebrook, K. and Gschwend, J. and Hartley, W. and Kessler, R. and Lagattuta, D. and Lewis, G. and Maia, M. A. G. and Makler, M. and Menanteau, F. and Niernberg, A. and Scolnic, D. and Vieira, J. D. and Gramillano, R. and Abbott, T. M. C. and Banerji, M. and Benoit-Lévy, A. and Brooks, D. and Burke, D. L. and Capozzi, D. and Rosell, A. Carnero and Carretero, J. and D’Andrea, C. B. and Dietrich, J. P. and Doel, P. and Evrard, A. E. and Frieman, J. and Gaztanaga, E. and Gruen, D. and Honscheid, K. and James, D. J. and Kuehn, K. and Li, T. S. and Lima, M. and Marshall, J. L. and Martini, P. and Melchior, P. and Miquel, R. and Neilsen, E. and Nichol, R. C. and Ogando, R. and Plazas, A. A. and Romer, A. K. and Sako, M. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thaler, J. and Walker, A. R. and Wester, W. and Zhang, Y.},
abstractNote = {We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either were not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ~ 0.80–3.2 and in i-band surface brightness i SB ~ 23–25 mag arcsec–2 (2'' aperture). For each of the six systems, we estimate the Einstein radius θ E and the enclosed mass M enc, which have ranges θ E ~ 5''–9'' and M enc ~ 8 × 1012 to 6 × 1013 M ⊙, respectively.},
doi = {10.3847/0004-637X/827/1/51},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 827,
place = {United States},
year = {Fri Aug 05 00:00:00 EDT 2016},
month = {Fri Aug 05 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4works
Citation information provided by
Web of Science

Save / Share:
  • We report the observation and confirmation of the first group- and cluster-scale strong gravitational lensing systems found in Dark Energy Survey data. Through visual inspection of data from the Science Verification season, we identified 53 candidate systems. We then obtained spectroscopic follow-up of 21 candidates using the Gemini Multi-object Spectrograph at the Gemini South telescope and the Inamori-Magellan Areal Camera and Spectrograph at the Magellan/Baade telescope. With this follow-up, we confirmed six candidates as gravitational lenses: three of the systems are newly discovered, and the remaining three were previously known. Of the 21 observed candidates, the remaining 15 either weremore » not detected in spectroscopic observations, were observed and did not exhibit continuum emission (or spectral features), or were ruled out as lensing systems. The confirmed sample consists of one group-scale and five galaxy-cluster-scale lenses. The lensed sources range in redshift z ∼ 0.80–3.2 and in i -band surface brightness i {sub SB} ∼ 23–25 mag arcsec{sup −2} (2″ aperture). For each of the six systems, we estimate the Einstein radius θ {sub E} and the enclosed mass M {sub enc}, which have ranges θ {sub E} ∼ 5″–9″ and M {sub enc} ∼ 8 × 10{sup 12} to 6 × 10{sup 13} M {sub ⊙}, respectively.« less
  • We measure the redshift evolution of galaxy bias from a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for amore » $$\sim$$116 deg$$^{2}$$ area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al., in prep) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a magnitude-limited galaxy sample. We find the galaxy bias and 1$$\sigma$$ error bars in 4 photometric redshift bins to be 1.33$$\pm$$0.18 (z=0.2-0.4), 1.19$$\pm$$0.23 (z=0.4-0.6), 0.99$$\pm$$0.36 ( z=0.6-0.8), and 1.66$$\pm$$0.56 (z=0.8-1.0). These measurements are consistent at the 1-2$$\sigma$$ level with mea- surements on the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing. In addition, our method provides the only $$\sigma_8$$-independent constraint among the three. We forward-model the main observational effects using mock galaxy catalogs by including shape noise, photo-z errors and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.« less
  • We use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8,000 redMaPPer clusters into 15 subsets, spanning ranges in the richness parametermore » $$5 \leq \lambda \leq 180$$ and redshift $$0.2 \leq z \leq 0.8$$, and fit the averaged mass density contrast profiles with a model that accounts for seven distinct sources of systematic uncertainty: shear measurement and photometric redshift errors; cluster-member contamination; miscentering; deviations from the NFW halo profile; halo triaxiality; and line-of-sight projections. We combine the inferred cluster masses to estimate the joint scaling relation between mass, richness and redshift, $$\mathcal{M}(\lambda,z) \varpropto M_0 \lambda^{F} (1+z)^{G}$$. We find $$M_0 \equiv \langle M_{200\mathrm{m}}\,|\,\lambda=30,z=0.5\rangle=\left[ 2.35 \pm 0.22\ \rm{(stat)} \pm 0.12\ \rm{(sys)} \right] \cdot 10^{14}\ M_\odot$$, with $$F = 1.12\,\pm\,0.20\ \rm{(stat)}\, \pm\, 0.06\ \rm{(sys)}$$ and $$G = 0.18\,\pm\, 0.75\ \rm{(stat)}\, \pm\, 0.24\ \rm{(sys)}$$. The amplitude of the mass-richness relation is in excellent agreement with the weak-lensing calibration of redMaPPer clusters in SDSS by Simet et al. (2016) and with the Saro et al. (2015) calibration based on abundance matching of SPT-detected clusters. Our results extend the redshift range over which the mass-richness relation of redMaPPer clusters has been calibrated with weak lensing from $$z\leq 0.3$$ to $$z\leq0.8$$. Calibration uncertainties of shear measurements and photometric redshift estimates dominate our systematic error budget and require substantial improvements for forthcoming studies.« less
  • In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less