skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Progress on Fuel Efficiency and Market Adoption - SuperTruck Factsheet

Abstract

The Department of Energy (DOE) launched the SuperTruck initiative in 2009 with the goal of developing and demonstrating a 50 percent improvement in overall freight efficiency (expressed in a ton-mile per gallon metric) for a heavy-duty Class 8 tractor-trailer. To date, the industry teams participating in the initiative have successfully met or are on track to exceed this goal, leveraging suites of technologies that hold significant potential for market success.

Publication Date:
Research Org.:
EERE Publication and Product Library
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V) (Vehicle Technologies Office Corporate)
OSTI Identifier:
1263776
Report Number(s):
DOE/EE-1419
7424
Country of Publication:
United States
Language:
English
Subject:
SuperTruck

Citation Formats

None. Progress on Fuel Efficiency and Market Adoption - SuperTruck Factsheet. United States: N. p., 2016. Web.
None. Progress on Fuel Efficiency and Market Adoption - SuperTruck Factsheet. United States.
None. 2016. "Progress on Fuel Efficiency and Market Adoption - SuperTruck Factsheet". United States. doi:. https://www.osti.gov/servlets/purl/1263776.
@article{osti_1263776,
title = {Progress on Fuel Efficiency and Market Adoption - SuperTruck Factsheet},
author = {None},
abstractNote = {The Department of Energy (DOE) launched the SuperTruck initiative in 2009 with the goal of developing and demonstrating a 50 percent improvement in overall freight efficiency (expressed in a ton-mile per gallon metric) for a heavy-duty Class 8 tractor-trailer. To date, the industry teams participating in the initiative have successfully met or are on track to exceed this goal, leveraging suites of technologies that hold significant potential for market success.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 6
}
  • Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savingsmore » for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.« less
  • The need for the National Highway Traffic Safety Administration to understand the importance of vehicle fuel economy in the marketplace has created the requirement for a quantitative measure of consumer attitudes toward fuel efficiency. This paper surveys the currently available measures of consumer attitudes toward fuel efficiency, concludes that they do not adequately meet NHTSA's needs, and develops the Index of the Relative Importance of Fuel Efficiency (IFE) to fill this void.
  • This report describes a computer model for simulating the effects of uncertainty about future fuel prices and competitors' behavior on the market shares of an automobile manufacturer who is considering introducing technology to increase fuel efficiency. Starting with an initial sales distribution, a pivot-point multinomial logit technique is used to adjust market shares based on changes in the present value of the added fuel efficiency. These shifts are random because the model generates random fuel price projections using parameters supplied by the user. The user also controls the timing of introduction and obsolescence of technology. While the model was designedmore » with automobiles in mind, it has more general applicability to energy using durable goods. The model is written in IBM BASIC for an IBM PC and compiled using the Microsoft QuickBASIC (trademark of the Microsoft corporation) compiler.« less
  • This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less
  • Cited by 1