skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Silicon Photomultipliers and their Applications to GlueX Calorimetry

Abstract

The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 x1.2 cm2) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.

Authors:
 [1]
  1. Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
Publication Date:
Research Org.:
Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
1263592
Report Number(s):
JLAB-PHY-16-2214; DOE/OR/23177-3861
DOE Contract Number:
AC05-06OR23177
Resource Type:
Conference
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1753; Conference: 11th Latin American Symposium on Nuclear Physics and Applications (XI LANSPA), 30 Nov - 04 Dec 2015. Medellin, Colombia
Country of Publication:
United States
Language:
English

Citation Formats

Smith, Elton S. Development of Silicon Photomultipliers and their Applications to GlueX Calorimetry. United States: N. p., 2016. Web. doi:10.1063/1.4955369.
Smith, Elton S. Development of Silicon Photomultipliers and their Applications to GlueX Calorimetry. United States. doi:10.1063/1.4955369.
Smith, Elton S. 2016. "Development of Silicon Photomultipliers and their Applications to GlueX Calorimetry". United States. doi:10.1063/1.4955369. https://www.osti.gov/servlets/purl/1263592.
@article{osti_1263592,
title = {Development of Silicon Photomultipliers and their Applications to GlueX Calorimetry},
author = {Smith, Elton S.},
abstractNote = {The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 x1.2 cm2) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chose the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.},
doi = {10.1063/1.4955369},
journal = {AIP Conference Proceedings},
number = ,
volume = 1753,
place = {United States},
year = 2016,
month = 7
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The GlueX experiment is a photoproduction experiment in Hall D at Jefferson Lab that is being commissioned for use with the new 12 GeV accelerator. The purpose of the experiment is to search for Hybrid mesons, which are mesons with quark and gluon degrees of freedom. The barrel calorimeter of GlueX is instrumented with 4000 large-area (1.2 × 1.2 cm{sup 2}) silicon photomultipliers (SiPMs). These photon sensors have properties similar to vacuum photomultipliers, but are unaffected by high magnetic fields. In our experiment they operate in magnetic fields exceeding 1T. After extensive tests with a variety of sensors, we chosemore » the S12045(X) custom SiPM arrays manufactured by Hamamatsu Corporation, also known as multi-pixel photon counters (MPPCs). We will give an overview of this new technology as well as the experience gained during two commissioning periods with beam.« less
  • The GlueX detector in Hall D at Jefferson Lab is instrumented with about 5000 Silicon Photomultipliers (SiPM) manufactured by Hamamatsu Corporation [2]. These photo sensors have properties similar to conventional photomultipliers but can be operated at high magnetic fields. Silicon photomultipliers with a sensitive area of 3x3 mm2 are used to detect light from the following GlueX scintillator detectors: the tagger microscope, pair spectrometer, and start counter. Arrays of 4x4 SiPMs sensors were chosen for the instrumentation of the barrel electromagnetic calorimeter. The tagger microscope must operate at high rates (up to 2.5 MHz) and provide time measurements with amore » resolution better than 0.3 ns. The paper will describe some results of the characterization of SiPMs for various GlueX sub-detectors.« less
  • Here, silicon photomultipliers (SiPMs) are used in detectors of the GlueX experiment devoted to studying the nature of confinement. These detectors are operable at counting rates as high as 2 MHz with a time resolution (FWHM) of approximately 0.3 ns and a number of excited pixels of up to 10 4. For SiPMs that operate under these conditions, the measured dependences of the recovery time and the time resolution are presented as functions of the number of excited pixels and the excitation frequency. Using a picosecond laser, the time resolution has been measured for an array of 4 × 4more » SiPMs, which was specially developed for the experiment.« less
  • We present a plan for upgrading the CMS HCAL photodetectors with Silicon Photomultipliers (SIPM).
  • A key feature of silicon photomultipliers (SiPMs) that can hinder their wider use in medium and high energy physics applications is their relatively high sensitivity to high energy background radiation, with particular regard to high energy neutrons. Dosages of 1010 neq/cm2 can damage them severely. In this study, some standard versions along with some new formulations are irradiated with a high intensity 241AmBe source up to a total dose of 5 × 109 neq/cm2. Key parameters monitored include dark noise, photon detection efficiency (PDE), gain, and voltage breakdown. Only dark noise was found to change significantly for this range ofmore » dosage. Analysis of the data indicates that within each vendor's product line, the change in dark noise is very similar as a function of increasing dose. At present, the best strategy for alleviating the effects of radiation damage is to cool the devices to minimize the effects of increased dark noise with accumulated dose.« less