skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States

Abstract

Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic is capable of producing health and climate benefits of between $54 and $120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately $690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. In the end, this work demonstrates health and climate benefits of off shore wind, provides further evidence of the utility of geographically-refinedmore » modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.« less

Authors:
 [1];  [2];  [2];  [3];  [4]
  1. Harvard T.H. Chan School of Public Health, Boston, MA (United States). Center for Health and the Global Environment
  2. Synapse Energy Economics, Cambridge, MA (United States)
  3. Univ. of Delaware, Newark, DE (United States). College of Earth, Ocean & Environment
  4. Boston Univ., MA (United States). Dept. of Environmental Health
Publication Date:
Research Org.:
Univ. of Delaware, Newark, DE (United States)
Sponsoring Org.:
USDOE; Heinz Endowments
OSTI Identifier:
1262453
Grant/Contract Number:
EE0005366; C2988; EE0005388
Resource Type:
Journal Article: Published Article
Journal Name:
Environmental Research Letters
Additional Journal Information:
Journal Volume: 11; Journal Issue: 7; Journal ID: ISSN 1748-9326
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; renewable energy; co-benefits; climate mitigation; air quality; offshore wind

Citation Formats

Buonocore, Jonathan J., Luckow, Patrick, Fisher, Jeremy, Kempton, Willett, and Levy, Jonathan I.. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States. United States: N. p., 2016. Web. doi:10.1088/1748-9326/11/7/074019.
Buonocore, Jonathan J., Luckow, Patrick, Fisher, Jeremy, Kempton, Willett, & Levy, Jonathan I.. Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States. United States. doi:10.1088/1748-9326/11/7/074019.
Buonocore, Jonathan J., Luckow, Patrick, Fisher, Jeremy, Kempton, Willett, and Levy, Jonathan I.. 2016. "Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States". United States. doi:10.1088/1748-9326/11/7/074019.
@article{osti_1262453,
title = {Health and climate benefits of offshore wind facilities in the Mid-Atlantic United States},
author = {Buonocore, Jonathan J. and Luckow, Patrick and Fisher, Jeremy and Kempton, Willett and Levy, Jonathan I.},
abstractNote = {Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic is capable of producing health and climate benefits of between $54 and $120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately $690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. In the end, this work demonstrates health and climate benefits of off shore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.},
doi = {10.1088/1748-9326/11/7/074019},
journal = {Environmental Research Letters},
number = 7,
volume = 11,
place = {United States},
year = 2016,
month = 7
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1088/1748-9326/11/7/074019

Save / Share:
  • Electricity from fossil fuels contributes substantially to both climate change and the health burden of air pollution. Renewable energy sources are capable of displacing electricity from fossil fuels, but the quantity of health and climate benefits depend on site-specific attributes that are not often included in quantitative models. Here, we link an electrical grid simulation model to an air pollution health impact assessment model and US regulatory estimates of the impacts of carbon to estimate the health and climate benefits of offshore wind facilities of different sizes in two different locations. We find that offshore wind in the Mid-Atlantic ismore » capable of producing health and climate benefits of between $54 and $120 per MWh of generation, with the largest simulated facility (3000 MW off the coast of New Jersey) producing approximately $690 million in benefits in 2017. The variability in benefits per unit generation is a function of differences in locations (Maryland versus New Jersey), simulated years (2012 versus 2017), and facility generation capacity, given complexities of the electrical grid and differences in which power plants are offset. In the end, this work demonstrates health and climate benefits of off shore wind, provides further evidence of the utility of geographically-refined modeling frameworks, and yields quantitative insights that would allow for inclusion of both climate and public health in benefits assessments of renewable energy.« less
  • Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less
  • Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less